From Cellulose to 3D Objects
3D printing with a biobased polymer for CO2-neutral manufacturing
© Wiley-VCH
Conventional “subtractive” processes involve cutting, sawing, turning, or milling, which results in a great deal of wasted material. In contrast, 3D printing processes are, in principle, waste-free, because they are “additive”: three-dimensional objects are produced in a layer-by-layer application of material. The most common technique is called fused deposition modeling (FDM). In this process, the raw material is squirted through a hot nozzle onto a mobile base and thereby liquefied (extrusion). The printer head produces the programmed form like in a conventional two-dimensional printing process, releasing small amounts of the polymer instead of ink. This is repeated for layer after layer until the desired three-dimensional object is complete. Yet, the polymers used until now have a number of disadvantages that limit their use. Some of the polymers are attacked by organic solvents. Those that withstand the solvents, on the other hand, adhere poorly and shrink on heating, allowing their layers to come apart and causing errors in the printing process.
Researchers working with Valentine P. Ananikov at the Russian Academy of Sciences (Moscow) have now solved these problems while also developing a sustainable process: 3D printing with polyethylene-2,5-furandicarboxylate (PEF), a polymer they make from cellulose.
The team was able to use a commercially available 3D printer under standard settings to successfully make objects. The individual layers of the printed objects were firmly bound to each other and the surface was smooth and of high quality. Tests demonstrated that the objects were resistant to dichloromethane, one of the most aggressive solvents. Thanks to the high thermal stability of the PEF, the printed objects could be repeatedly melted, made into filaments, and printed again.
Computer calculations indicate that the individual building blocks of PEF may contain non-linear fragments and form a spiral twist, which gives an access to new types of geometry. Another important feature is a greater polarity of PEF. The researchers believe that structural diversity opens new superior applications of PEF.
Original publication
Other news from the department science
These products might interest you
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
Spinsolve Benchtop NMR by Magritek
Spinsolve Benchtop NMR
Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance
HYPERION II by Bruker
FT-IR and IR laser imaging (QCL) microscope for research and development
Analyze macroscopic samples with microscopic resolution (5 µm) in seconds
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.