Millions may face protein deficiency as a result of human-caused carbon dioxide emissions
"This study highlights the need for countries that are most at risk to actively monitor their populations' nutritional sufficiency, and, more fundamentally, the need for countries to curb human-caused CO2 emissions," said Samuel Myers, senior research scientist in the Department of Environmental Health.
Globally, 76% of the population derives most of their daily protein from plants. To estimate their current and future risk of protein deficiency, the researchers combined data from experiments in which crops were exposed to high concentrations of CO2 with global dietary information from the United Nations and measures of income inequality and demographics.
They found that under elevated CO2 concentrations, the protein contents of rice, wheat, barley, and potatoes decreased by 7.6%, 7.8%, 14.1%, and 6.4%, respectively. The results suggested continuing challenges for Sub Saharan Africa, where millions already experience protein deficiency, and growing challenges for South Asian countries, including India, where rice and wheat supply a large portion of daily protein. The researchers found that India may lose 5.3% of protein from a standard diet, putting a predicted 53 million people at new risk of protein deficiency.
A companion paper found that CO2-related reductions in iron content in staple food crops are likely to also exacerbate the already significant problem of iron deficiency worldwide. Those most at risk include 354 million children under 5 and 1.06 billion women of childbearing age--predominantly in South Asia and North Africa--who live in countries already experiencing high rates of anemia and who are expected to lose more than 3.8% of dietary iron as a result of this CO2 effect.
These two studies, taken alongside a 2015 study co-authored by Myers showing that elevated CO2 emissions are also likely to drive roughly 200 million people into zinc deficiency, quantify the significant nutritional toll expected to arise from human-caused CO2 emissions.
"Strategies to maintain adequate diets need to focus on the most vulnerable countries and populations, and thought must be given to reducing vulnerability to nutrient deficiencies through supporting more diverse and nutritious diets, enriching the nutritional content of staple crops, and breeding crops less sensitive to these CO2 effects. And, of course, we need to dramatically reduce global CO2 emissions as quickly as possible," Myers said.
Original publication
Danielle E. Medek, Joel Schwartz, and Samuel S. Myers; "Estimated Effects of Future Atmospheric CO2 Concentrations on Protein Intake and the Risk of Protein Deficiency by Country and Region"; Environmental Health Perspectives; 2017
M. R. Smith, C. D. Golden, and S. S. Myers; "Potential rise in iron deficiency due to future anthropogenic carbon dioxide emissions"; GeoHealth; 2017
Most read news
Original publication
Danielle E. Medek, Joel Schwartz, and Samuel S. Myers; "Estimated Effects of Future Atmospheric CO2 Concentrations on Protein Intake and the Risk of Protein Deficiency by Country and Region"; Environmental Health Perspectives; 2017
M. R. Smith, C. D. Golden, and S. S. Myers; "Potential rise in iron deficiency due to future anthropogenic carbon dioxide emissions"; GeoHealth; 2017
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.