NRL issued patent for solar microbial fuel cell
U.S. Naval Research Laboratory
A solar microbial fuel cell (SMFC) is a non-semiconductor-based system, which employs microorganisms to generate electric power by photosynthetically replenishing reactants of a sealed microbial fuel cell using sunlight.
The SMFC reactants (glucose and oxygen) are internally regenerated by a group of photosynthetic microbes whose reactants, carbon dioxide (CO2) and water (H2O), are the products of the microbial fuel cell. This interdependency results in many thousands of hours of long-term electricity generation from sunlight without replenishment of the microbial fuel cell reactants.
"Natural photosynthetic systems, such as trees and algae blooms, self-repair, a property that makes them highly durable," said Dr. Lenny Tender, research chemist, Center for Bio/Molecular Science and Engineering. "Here, we incorporate photosynthetic organisms with the self-assembling and self-maintaining benthic microbial fuel cell (BMFC) to enable durable land-based photoelectrochemical solar cells."
The BMFC generates electrical power by oxidizing organic matter (fuel) residing in sediment pore water with oxygen (oxidant) in overlying water, and consists of an anode imbedded in the marine sediment connected by an external electrical circuit to a cathode positioned in overlying water. Unlike the open marine-based BMFC generator, the SMFC apparatus does not require an endless flux of reactants from sediment and seawater to persistently generate power, but instead, recycles the organic matter sealed within the unit to regenerate the reactants.
"Microorganisms harvested from sea water in shallow coastal environments, in relatively low abundance, become enriched when the cell is sealed due to the accumulation of carbon dioxide and depletion of oxygen in the overlying water," Tender said. "These organisms use sunlight to convert the electrode products to glucose and oxygen, which can be re-utilized in the electrode reactions eliminating the need for a constant flux of new glucose and oxygen."
Tender added that the SMFC combines energy storage with power delivery. Meaning, when there is abundant sunlight, photosynthesis will result in generation of fuel and oxidant, some of which can be used to generate power immediately, and the remainder accumulated to be used later when there is no Sun. This is ideally done without the need for capacitor or battery storage devices.
The SMFC can be 'stacked' in series to increase voltage and can power any device that currently uses a conventional photovoltaic power supply. However, work is underway to understand the limiting factors.
Most read news
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.