New sensors could enable more affordable detection of pollution and diseases
Current disease and contamination sensors require expensive readout equipment or trained personnel. Yuehe Lin, Yong Tang and colleagues propose a new detection system based on pressure changes. For example, when a disease biomarker is present, it causes a chain reaction in the device that results in oxygen being released and pressure building. The pressure changes are measured by a portable barometer, and smartphone software provides an easy readout of the results.
To show the versatility of the pressure sensor, the team tested a variety of applications. Prototypes could detect carcinoembryonic antigen, a protein present in high levels in patients with colon or rectal cancer; ractopamine, which is an animal-feed additive banned in many countries; and thrombin, a cardiovascular disease marker. In addition, a mercury-ion sensor was developed for environmental pollution monitoring. The researchers say that because the results are immediately available with a smartphone, the method could enable real-time monitoring of environmental pollution, disease outbreaks and food safety.
Original publication
Other news from the department science
These products might interest you
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.
Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.