Speeding up electrons in semiconductors
Figure adapted with permission from the front cover of Macromol. Chem. Phys. 18/2018. Copyright © 2018, John Wiley and Sons
Led by Kenji Ogino, a professor at Graduate School of Bio-Applications and Systems Engineering at TUAT, Japan, the team found that adding polystyrene, commonly known as Styrofoam in North America, could enhance the semiconducting polymer by allowing electrons to move from plane to plane quickly. The process, called hole mobility, is how electrons move through an electric field consisting of multiple layers. When a molecule is missing an electron, an electron from a different plane can jump or fall and take its place.
Through various imaging techniques, it's fairly easy to follow the electron trail in the crystal-based structures. In many semiconducting polymers, however, the clean, defined lines of the crystalline skeleton intertwine with a much more difficult-to-define region. It's actually called the amorphous domain.
"[Electrons] transport in both crystalline and amorphous domains. To improve the total electron mobility, it is necessary to control the nature of the amorphous domain," Ogino said. "We found that hole mobility extraordinarily improved by the introduction of polystyrene block accompanied by the increase of the ratio of rigid amorphous domain."
The researchers believe that the way the crystalline domain connects within itself occurs most effectively through the rigid amorphous domain. The addition of polystyrene introduced more amorphous domain, but contained by flexible chains of carbon and hydrogen atoms. Even though the chains are flexible, it provides rigidity, and some degree of control, to the amorphous domain.
Electrons moved two to three times quicker than normal
"The introduction of a flexible chain in semicrystalline polymers is one of the promising strategies to improve the various functionalities of polymer films by altering the characteristics of the amorphous domain," Ogino said. "We propose that the rigid amorphous domain plays an important role in the hole transporting process."
Enhanced hole mobility is a critical factor in developing more efficient solar devices, according to Ogino. Next, Ogino and the researchers plan to examine how the enhanced hole mobility affected other parameters, such as the chemical composition and position of the structures within the polymer film.
Original publication
Other news from the department science
These products might interest you
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
Spinsolve Benchtop NMR by Magritek
Spinsolve Benchtop NMR
Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance
HYPERION II by Bruker
FT-IR and IR laser imaging (QCL) microscope for research and development
Analyze macroscopic samples with microscopic resolution (5 µm) in seconds
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.