Fabrication technique leads to broader sunlight absorption in plastic solar cells
Peter and Ryan Allen
As plastic solar cells now rival silicon-based solar cells in power conversion efficiency, researchers want to increase the range of photonic energies that plastic solar cells absorb. Ternary solar cells, in which three materials are mixed together as a light-harvesting layer, offer a potential solution. However, while ternary solar cells have been manufactured for years, most of the devices have not been able to meet desired levels of performance - mainly due to unfavorable mixing.
Masoud Ghasemi, a graduate student in physics at NC State and lead author of a paper describing the research, worked with a team of other NC State physicists led by Harald Ade and chemists from the University of North Carolina at Chapel Hill led by Wei You to identify a way to solve the production problem.
The team proposed a calorimetric tool to study the morphology of a ternary system with two absorption-matched donor polymers and a fullerene acceptor. When fabricated by the traditional method - which involves mixing all three materials together and then depositing them onto a substrate - the system gave poor device performance.
"Using thermodynamic techniques, we were able to find that this particular mixture was undergoing 'alloying,' in which the donor polymers tend to group up together and push the fullerene away," Ghasemi says. "This explains why so many conventionally produced ternary cells may have low efficiency."
The team decided to solve the alloying problem by mixing each polymer separately with the fullerene, rather than mixing all three materials together at once. They created two distinct mixtures which were layered onto the substrate, creating sequentially cast ternary (SeCaT) solar cells, which did not fall prey to alloying.
"The SeCaT solar cells prevent the polymers from mixing due to their layered structure," Ghasemi says. "This novel design allows fabrication of plastic solar cells with wider optical sensitivity using cheap and scalable processing steps and with reduced materials selection constraints. Hopefully this new method can be particularly useful for greenhouse applications toward zero energy farming, as the materials used to demonstrate our method have optical properties compatible to these applications."
Original publication
Other news from the department science
These products might interest you
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
Spinsolve Benchtop NMR by Magritek
Spinsolve Benchtop NMR
Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance
HYPERION II by Bruker
FT-IR and IR laser imaging (QCL) microscope for research and development
Analyze macroscopic samples with microscopic resolution (5 µm) in seconds
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.