From nanobeads to proton radiation
Tobias Ostermayr
At Texas Petawatt Lasers in Austin, Texas, the LMU physicists concentrated laser light so strongly on plastic nanobeads that these essentially exploded. In the experiment, approximately one quadrillion billion photons (3 times 1020 photons) were focused onto microspheres of about 500 nanometers in diameter. Each bead consists of about 50 billion carbon and hydrogen atoms and is held in suspension by the electromagnetic fields of a so-called “Paul trap”, where the laser beam can irradiate them.
The laser radiation rips away some 15 per cent of the electrons bound in these atoms. The remaining, positively charged atomic nuclei are then violently repelled, and the nanospheres explode at speeds of around 10 per cent the speed of light. The radiation from the positively charged particles (protons) then spreads out in all directions.
This mode of production of proton beams with laser light promises to open up new opportunities for nuclear medicine – for example, in the fight against tumors. At present, proton beams are produced in conventional accelerators. In contrast, laser-generated proton beams open the door to the development of novel, perhaps even cheaper and more efficient, methods of treatment. The Munich-based team led by Jörg Schreiber has hitherto produced proton radiation using a diamond-like film, which is targeted by extremely strong laser light. The proton radiation thus emitted could then be directed onto the body of a patient.
The ability to produce radiation by the explosive disintegration of plastic nanobeads might even allow the nanoparticles to be placed inside a tumor, and be vaporized with laser light. Thus proton beams could be put to work in destroying tumors without causing damage to surrounding healthy tissue.
Original publication
Other news from the department science
These products might interest you
NANOPHOX CS by Sympatec
Particle size analysis in the nano range: Analyzing high concentrations with ease
Reliable results without time-consuming sample preparation
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.