Natural mother of pearl structure, synthetic replication
The key to developing nacre, which is 3,000 times more fracture resistant than the calcium carbonate it primarily consists of (95%), lies in the replication of the hierarchically arranged structure comprised of its particle-level components. Previous efforts to produce synthetic nacre involved attempts at replicating its layered structure. Unfortunately, the natural mineralization process, which many mollusks such as oysters or snails use for the production of nacre, could not be imitated. The researchers around Helmut Cölfen developed a new procedure where the natural components of nacre were used in consecutive layering and mineralization processes. They were able to simultaneously control the mineral structure in the nano- and micrometer range during a so-called 'mesoscopic approach'. In this way, the chemists were able to create a biomineral that is almost identical to the naturally occurring nacre. The material is hard, fracture-resistant and is based on - in contrast to the results of previous production attempts - the insoluble structure of chitin, just like in the natural nacre.
"The advantage of this approach is that we can substitute higher-grade components for the brittle calcium carbonate base material during the production process. This means that including mechanically superior materials instead of calcium carbonate in our manufacturing process will allow us to produce high-performance materials in the future - all based on the design of the mollusk shell and our bioinspired research", explains Helmut Cölfen. His synthetic production process has one significant advantage over nature: It is faster. The developmental process of naturally occurring nacre takes months, if not years. Helmut Cölfen's process takes two weeks.
Original publication
Most read news
Original publication
Mao, Li-Bo and Gao, Huai-Ling and Yao, Hong-Bin and Liu, Lei and Cölfen, Helmut and Liu, Gang and Chen, Si-Ming and Li, Shi-Kuo and Yan, You-Xian and Liu, Yang-Yi and Yu, Shu-Hong; "Synthetic nacre by predesigned matrix-directed mineralization"; Science; 2016
Topics
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.