Consortium scales up production of bio-aromatics from waste
Biorizon
Aromatics are one of the main feedstocks of the chemical industry, constituting 40% of the total market. Currently, these are exclusively produced from fossil sources, generating considerable CO2 emissions. "This is a key milestone," says Monique Wekking, business development manager of Biorizon/TNO. "At the end of last year we convincingly proved that it is possible, on a lab scale, to convert waste streams into furans, the raw materials for aromatics, with a highly promising business case. We are now scaling up and working towards our ultimate goal: commercial production of bio-aromatics."
Unique collaboration: open innovation throughout the whole chain
A unique aspect of this follow-up project is the broad consortium in which all links of the value chain are represented: waste processors (Orgaworld, AEB, Twence, Association of Waste Processors, Knowaste), water treatment companies (Stowa, Waternet) and organisations (Biobased Delta, Amsterdam Port Authority), a designer and builder of pilot facilities (Zeton), and a large scale user of aromatics in the production of polymers (SABIC).
Under the Biorizon Shared Research flag TNO will coordinate the Waste2Aromatics project providing the technologies required to convert the waste streams. The project, with a budget 1.3 million euros, is being funded for 46% by the industrial consortium and for 53% by the Top consortium for Knowledge and Innovation (TKI) Chemistry.
From heterogeneous waste via furans to aromatics
To produce bio-aromatics from biodegradable waste, the (hemi)cellulose present in the organic fraction must be converted into furans. Two technologies, already proven on a lab scale, are employed for this catalytic thermochemical conversion: superheated steam (SHS) and bi-phasic reaction (BPR).
This project is geared to improving yield, reducing production costs and boosting confidence in the technologies by scaling up from laboratory to test scale (litre/hour). Attention is also being paid to the pre-treatment of waste streams, utilisation of by-products and the business case. Ultimately, the project will produce a blueprint for a pilot plant for the conversion of waste into furans that could be operational at a waste-processing company in 2019.
Topics
Organizations
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.