Fluid-inspired material self-heals before your eyes
Coating for metals rapidly heals over scratches and scrapes to prevent corrosion
A Northwestern University team has developed a new coating strategy for metal that self-heals within seconds when scratched, scraped or cracked. The novel material could prevent these tiny defects from turning into localized corrosion, which can cause major structures to fail.
"Localized corrosion is extremely dangerous," said Jiaxing Huang, who led the research. "It is hard to prevent, hard to predict and hard to detect, but it can lead to catastrophic failure."
When damaged by scratches and cracks, Huang's patent-pending system readily flows and reconnects to rapidly heal right before the eyes. (Watch video.) The researchers demonstrated that the material can heal repeatedly -- even after scratching the exact same spot nearly 200 times in a row.
While a few self-healing coatings already exist, those systems typically work for nanometer- to micron-sized damages. To develop a coating that can heal larger scratches in the millimeter-scale, Huang and his team looked to fluid.
"When a boat cuts through water, the water goes right back together," Huang said. "The 'cut' quickly heals because water flows readily. We were inspired to realize that fluids, such as oils, are the ultimate self-healing system."
But common oils flows too readily, Huang noted. So he and his team needed to develop a system with contradicting properties: fluidic enough to flow automatically but not so fluidic that it drips off the metal's surface.
The team met the challenge by creating a network of lightweight particles -- in this case graphene capsules -- to thicken the oil. The network fixes the oil coating, keeping it from dripping. But when the network is damaged by a crack or scratch, it releases the oil to flow readily and reconnect. Huang said the material can be made with any hollow, lightweight particle -- not just graphene.
"The particles essentially immobilize the oil film," Huang said. "So it stays in place."
The coating not only sticks, but it sticks well -- even underwater and in harsh chemical environments, such as acid baths. Huang imagines that it could be painted onto bridges and boats that are naturally submerged underwater as well as metal structures near leaked or spilled highly corrosive fluids. The coating can also withstand strong turbulence and stick to sharp corners without budging. When brushed onto a surface from underwater, the coating goes on evenly without trapping tiny bubbles of air or moisture that often lead to pin holes and corrosion.
Original publication
Most read news
Other news from the department science
These products might interest you
OCA 200 by DataPhysics
Using contact angle meter to comprehensively characterise wetting behaviour, solids, and liquids
With its intuitive software and as a modular system, the OCA 200 answers to all customers’ needs
Dursan by SilcoTek
Innovative coating revolutionizes LC analysis
Stainless steel components with the performance of PEEK - inert, robust and cost-effective
Tailor-made products for specific applications by IPC Process Center
Granulates and pellets - we develop and manufacture the perfect solution for you
Agglomeration of powders, pelletising of powders and fluids, coating with melts and polymers
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.