Graphene microphone outperforms traditional nickel and offers ultrasonic reach
"We wanted to show that graphene, although a relatively new material, has potential for real world applications" explains Marko Spasenovic, an author of the paper. "Given its light weight, high mechanical strength and flexibility, graphene just begs to be used as an acoustic membrane material."
The graphene membrane, approximately 60 layers thick, was grown on a nickel foil using chemical vapour deposition, to ensure consistent quality across all the samples.
During membrane production, the nickel foil was etched away and the graphene membrane placed in the same housing as a commercial microphone for comparison. This showed a 15 dB higher sensitivity than the commercial microphone.
The researchers also simulated a 300-layer thick graphene membrane, which shows potential for performance far into the ultrasonic part of the spectrum.
"The microphone performed as well as we hoped it would" adds Spasenovic. "A thicker graphene membrane theoretically could be stretched further, enabling ultrasonic performance, but sadly we're just not quite there yet experimentally."
"At this stage there are several obstacles to making cheap graphene, so our microphone should be considered more a proof of concept" concludes Spasenovic. "The industry is working hard to improve graphene production - eventually this should mean we have better microphones at lower cost."
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.