Imitating synapses of the human brain could lead to smarter electronics
While the brain still holds many secrets, one thing we do know is that the flexibility, or plasticity, of neuronal synapses is a critical feature. In the synapse, many factors, including how many signaling molecules get released and the timing of release, can change. This mutability allows neurons to encode memories, learn and heal themselves. In recent years, researchers have been building artificial neurons and synapses with some success but without the flexibility needed for learning. Tian-Ling Ren and colleagues set out to address that challenge.
The researchers created an artificial synapse out of aluminum oxide and twisted bilayer graphene. By applying different electric voltages to the system, they found they could control the reaction intensity of the receiving "neuron." The team says their novel dynamic system could aid in the development of biology-inspired electronics capable of learning and self-healing.
Original publication
Most read news
Original publication
He Tian, Wentian Mi, Xue-Feng Wang, Haiming Zhao, Qian-Yi Xie, Cheng Li, Yu-Xing Li, Yi Yang, and Tian-Ling Ren; "Graphene Dynamic Synapse with Modulatable Plasticity"; Nano Letters; 2015
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.