New metal alloy could yield green cooling technologies
The study explores an iron-based alloy as a component of next-generation cooling technologies. The materials use magnetic fields to change a refrigerant's temperature without the coolant gases associated with global warming. The thermodynamic phenomenon, called "magnetocaloric effect," makes magnetic refrigeration an environmentally friendly and efficient alternative to current cooling technologies.
The alloy is a substitute for metals made from rare-earth elements, predominantly produced in China and increasingly used in modern magnets. The supply and cost of rare-earth metals are susceptible to geopolitical tensions that hamper the commercial viability of new magnetic refrigeration technologies, the authors reported. Transition metals typically offer supply chain stability and are cheaper by weight than rare-earths, they said.
"Our work is a great example of President Obama's Materials Genome Initiative in action," Casey Miller, head of RIT's materials science and engineering program, said. "We created alloys containing four and five different elements whose properties helped our theory collaborators develop a calculation that predicts the magnetic properties of a larger set of compounds that have not yet been synthesized. Now we have identified hundreds of new alloy combinations that could be useful."
Miller and his colleagues investigated the family of metal compounds known as "high entropy alloys." This class of emergent materials holds potential for advanced manufacturing and possess hardness and resistance to wear and corrosion, the authors found.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.