Researchers take first steps to create biodegradable displays for electronics
University of Missouri researchers are on the path to creating biodegradable electronics by using organic components in screen displays. The researchers' advancements could one day help reduce electronic waste in the world's landfills.

The illustration shows a theoretical simulation of the distribution of the polymer on peptide nanotubes and an electron microscopy image of the nanocomposite.
Suchi Guha, University of Missouri
"Current mobile phones and electronics are not biodegradable and create significant waste when they're disposed," said Suchismita Guha, professor in the Department of Physics and Astronomy at the MU College of Arts and Science. "This discovery creates the first biodegradable active layer in organic electronics, meaning--in principle--we can eventually achieve full biodegradability."
Guha, along with graduate student Soma Khanra, collaborated with a team from the Federal University of ABC (UFABC) in Brazil to develop organic structures that could be used to light handheld device screens. Using peptides, or proteins, researchers were able to demonstrate that these tiny structures, when combined with a blue light-emitting polymer, could successfully be used in displays.
"These peptides can self-assemble into beautiful nanostructures or nanotubes, and, for us, the main goal has been to use these nanotubes as templates for other materials," Guha said. "By combining organic semiconductors with nanomaterials, we were able to create the blue light needed for a display. However, in order to make a workable screen for your mobile phone or other displays, we'll need to show similar success with red and green light-emitting polymers."
The scientists also discovered that by using peptide nanostructures they were able to use less of the polymer. Using less to create the same blue light means that the nanocomposites achieve almost 85 percent biodegradability.
"By using peptide nanostructures, which are 100 percent biodegradable, to create the template for the active layer for the polymers, we are able to understand how electronics themselves can be more biodegradable," Guha said. "This research is the first step and the first demonstration of using such biology to improve electronics."
Original publication
Most read news
Other news from the department science

Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Statistical_mechanics
Agilent Technologies' brochure describes applications and features of new real-time gas analyzer
Stirling_engine

Berkeley Lab scientists discover new atomically layered, thin magnet - Study reveals unprecedented control of ferromagnetic behavior in 2-D material
Repeatome
Gault_Clay

Light-driven motors to power nanorobots of the future

Demonstration of large-scale technique to produce quantum dots
