DESI, an ambitious probe of dark energy, achieves its next major milestone
R. Lafever and J. Moustakas for the DESI Collaboration, background image by Dark Energy Camera Legacy Survey.
Two hundred physicists and astronomers make up the international DESI Collaboration, which is based at DOE's Lawrence Berkeley National Laboratory (Berkeley Lab). Using DESI's redshift data they will create a three-dimensional map of the universe reaching deeper in space and time than any yet made. The map will reveal how dark energy and gravity have competed over time to shape the structure of the universe--both the regular clustering of galaxies and dark matter on the largest scales, and the idiosyncratic motion of individual galaxies.
DESI Director Michael Levi, of Berkeley Lab's Physics Division, says, "We'll study four kinds of targets to gather a continuous range of redshifts: nearby bright galaxies to redshift 0.4; luminous red galaxies to redshift 1; emission line galaxies to redshift 1.6; and very distant quasars all the way to redshift 3.5."
The DESI instrument will be mounted on the 4-meter Mayall telescope at Kitt Peak National Observatory near Tucson, Arizona.
Temperature differences map early variations in density (sound waves) that subsequently evolved into the clustering of galaxies, intergalactic gas, and dark matter at recurrent intervals throughout space. Called baryon acoustic oscillations (BAO), these regularly spaced clusterings are consistent over time--like a ruler to gauge the universe, with the CMB at one end--allowing direct measures of dark energy's effect on expansion.
Wechsler says BAO is the beginning of what DESI can do. "Because large accumulations of mass have gravitational effects on individual galaxies, known as redshift space distortions, DESI can also test the accuracy of General Relativity, Einstein's theory of gravity."
In related investigations, DESI will "weigh" the total mass of neutrinos in the universe, with a good chance of learning which of the three known kinds of neutrinos is the heaviest. DESI will also compare models of the inflationary epoch, when the universe expanded exponentially within a sliver of a second after the big bang, leaving it extraordinarily uniform in composition.
"The Mayall telescope is built like a battleship," says Natalie Roe, Director of Berkeley Lab's Physics Division and a member the DESI Executive Committee. The telescope's moving weight is 375 tons, and it is "so well engineered it can support this very heavy new instrument "- which weighs five tons -" suspended way up there in the air."
"What's impressed me most over the years since DESI was first proposed is that the technical capability of the instrument is even better than we hoped," says Berkeley Lab's David Schlegel. Schlegel and Brenna Flaugher, of the Fermi National Accelerator Laboratory, are DESI's Project Scientists. "For example, the final design of the robot positioners has very few moving parts - about 25 parts overall, with only two critical connections."
Most read news
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.