In eight steps to a natural product
The eight-step path to natural product shedding light on its biosynthesis and reveal its relationship to the pigment purpurogallin.
Epicolactone was first isolated in pure form in 2012. The compound is produced by the endophytic fungus Epicoccum nigrum, which grows on agriculturally important tropical plants such as sugarcane and the cocoa tree. From a structural point of view, epicolactone is a highly complex natural product. It contains several stereocenters and is characterized by an intricate network of interconnected rings. "We wanted to know how this very beautiful structure is put together by the organism and we wanted to apply this knowledge to the design an efficient total synthesis" says Dirk Trauner.
Simple precursor, complex product
Nothing was known about the biosynthesis of epicolactone, but the LMU team noticed similarities between its structure and the compound purpurogallin. Purpurogallin is the archetype of a whole class of natural pigments, some of which are responsible for the dark color of fermented teas and of many species of fungus. Ink made by combining iron salts with extracts from oak galls has been used for over 2000 years, and owes its brownish-black color to purpurogallin.
"The biosynthesis of purpurogallin is well understood, and this enabled us to design a scheme for the biomimetic total synthesis of epicolactone. The pathway begins with vanillyl alcohol and leads in only eight steps to epicolactone," Trauner explains. "This is yet another example of how a structurally complicated natural product is assembled from simple precursors using a reaction cascade." The synthetic pathway also gives to a related compound called isoepicolactone, which is likely to occur in E. nigrum as well.
Original publication
Other news from the department science
Most read news
More news from our other portals
See the theme worlds for related content
Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.
Topic world Synthesis
Chemical synthesis is at the heart of modern chemistry and enables the targeted production of molecules with specific properties. By combining starting materials in defined reaction conditions, chemists can create a wide range of compounds, from simple molecules to complex active ingredients.