New catalyst uses light to convert nitrogen to ammonia
Method could lead to more environmentally friendly fertilizer production
"My colleagues and I said, 'Let's do a crazy experiment,'" Kanatzidis said. "Let's excite the chalcogel with light, give it some nitrogen and see if the material will reduce the nitrogen to ammonia. To our surprise, we saw ammonia forming, and the ammonia got more and more intense over time."
The FeMoS co-factor in the chalcogel binds to nitrogen and reduces it by eight electrons, making two ammonia molecules and one hydrogen molecule, just as happens in nature.
After the early positive results, the Northwestern researchers conducted a number of control experiments that confirmed the ammonia produced did indeed come from the nitrogen and not some other source.
The chalcogel material is very robust. "This catalyst can go and go and go and still work," Kanatzidis said. "Nitrogenase in biological systems has to rebuild itself every six to eight hours."
The researchers do concede, however, that their catalyst is slower than nitrogenase, approximately 1,000 times slower.
"But nitrogenase had two or three billion years to evolve," Kanatzidis said. "We are happy that our material reduces nitrogen much like nitrogenase. It's a fantastic starting point. Now we are trying to figure out how this material works and how it can become faster. We've already made some progress in this direction."
Original publication
Abhishek Banerjee, Eric A. Margulies, Yongbo Zhang, Benjamin D. Yuhas, Yurina Shim and Michael R. Wasielewski; "Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels."; Journal of the American Chemical Society.
Most read news
Original publication
Abhishek Banerjee, Eric A. Margulies, Yongbo Zhang, Benjamin D. Yuhas, Yurina Shim and Michael R. Wasielewski; "Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels."; Journal of the American Chemical Society.
Topics
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.