Chemists control structure to unlock magnetization and polarization simultaneously
Scientists at the University of Liverpool have controlled the structure of a material to simultaneously generate both magnetisation and electrical polarisation, an advance which has potential applications in information storage and processing. Researchers from the University's School of Physical Sciences demonstrated that it is possible to unlock these properties in a material which initially displayed neither by making designed changes to its structure.
To make a single material that has these two distinct properties - magnetisation and electrical polarisation - is difficult because the electronic requirements for obtaining them in a material are typically contradictory: materials characteristics, such as the crystal structure or the atomic composition, which favour polarisation often disfavour magnetisation. However, materials where polarisation and magnetisation coexist at room temperature are potentially important for low-energy information technology applications.

Scientists at the University of Liverpool have controlled the structure of a material to simultaneously generate both magnetisation and electrical polarisation at room temperature.
University of Liverpool
Energy consumption
For information storage, these materials can combine low-power electrical writing of information with non-destructive magnetic reading, while logic devices using them for information processing can work without charge current flow. The increasing energy consumption of computers and internet-enabled devices could be a significant future sustainability challenge.
Liverpool Materials Chemist, Professor Matthew Rosseinsky, said "We were able to demonstrate that the magnetisation and polarisation are coupled by measuring the linear magnetoelectric coefficient, a key physical quantity for the integration of such materials in a device. This coupling arises because both properties are produced by the same single set atomic motions that we built in to the material."
"There are a number of challenges still to address, particularly switching the polarisation and making the material more electrically insulating, before applications of this material for information storage can be considered."
"By designing-in the required atomic-level changes using both computation and experiment together, we produced three properties (polarisation, magnetisation, magnetoelectricity) from a material that initially displayed none of them.
"Design of materials properties at the atomic scale is difficult, as it is quite a different problem from designing a large-scale object like a bridge or a car, but would be very desirable across the whole spectrum of properties. We are currently working on materials design in other areas, such as batteries or solar energy harvesting, where improvements are also needed."
Most read news
Other news from the department science

Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.