Discovery sheds light on nuclear reactor fuel behavior during a severe event
New discovery about melted UO2 structure will enhance understanding of reactor safety during meltdown scenario
UO2 is the primary fuel component in the majority of existing nuclear reactors, but little is known about the molten state because of its extremely high melting point. Until now, the extremely high temperature and chemical reactivity of the melt have hindered studies of molten UO2. This lack of fundamental information has made it difficult to evaluate issues associated with the interaction of molten UO2 with a reactor's zirconium cladding and steel containment vessel.
The research team found that when uranium dioxide melts, the number of oxygen atoms around uranium changes from eight-fold to a mixture of six- and seven-fold, which changes the way it interacts with other materials. Many existing models, however, do not account for this change in structure or the rapid oxygen dynamics that occur at high temperatures.
"Determining the behavior of UO2 under extreme conditions is essential to enhancing our understanding of reactor safety during severe accidents," said Mark Williamson of Argonne's Chemical Sciences and Engineering Division.
"Very few places in the world have the capability to safely measure the structure of molten UO2 at 3,000 degrees Celsius without introducing contamination from the container that holds the melt," added Chris Benmore of Argonne's X-ray Science Division.
Researchers studied the UO2 in the hot crystalline and molten states. In this experiment, researchers relied on the APS's high-energy synchrotron X-ray beam to study a bead of UO2 that was aerodynamically levitated on a stream of argon and heated with a laser beam.
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.