Quantum holograms as atomic scale memory keepsake
Study demonstrates that quantum holograms could be a candidate for becoming quantum information memory
Quantum memory differs from conventional memory currently used in computers in its ability to write in and retrieve signals preserving their quantum state. Holograms are well-known classical memory devices that allow optical images to be written and retrieved. The authors of this study have previously suggested solving the problem of quantum memory for light by extending the idea of a classical hologram to a quantum domain. The hologram is written on a medium able to store quantum superposition – and not just the intensity of light beam as traditional holograms are.
The readout of both classical and quantum holograms is performed by the illumination of the medium with an external light pulse. It is referred to as the control field and is scattered on the internal structure of the hologram. To do so, the authors apply common theoretical methods of quantum optics, including quantum description of cold atoms that compose the storage medium, as well as quantum theory of light propagation and interaction with the medium.
Original publication
Original publication
Vetlugin, A.N. and Sokolov, I.V.; "Addressable parallel cavity-based quantum memory."; European Physical Journal D.
Organizations
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.