Slow-motion movies of tiny nanostructures
Researchers developed a novel microscope
Max Eisele
Modern nanotechnology does what nature has always been able to do: Systematic structuring on the nanometer length scale – the billionth part of a meter – to create artificial materials with novel properties. Important examples are semiconductor building blocks for high-speed electronics. To understand the behavior of these structures and to make them even faster, smaller, and more efficient, scientists would like to trace directly how electrons move on length scales of only a few atoms. These processes often occur extremely quickly, which has spurred a drive to develop a microscope that combines excellent spatial resolution with the highest possible temporal resolution. Max Eisele, Tyler Cocker et collegues at the Institute for Experimental and Applied Physics at the University of Regensburg have now developed a microscope that fulfills such requirements.
The physicists achieve excellent spatial resolution by focusing light onto a tiny metal tip. The tip collects and confines the light to a volume only 10 nanometers wide in all three spatial dimensions – a volume that is a billion times smaller than in conventional optical microscopy. The tip is then raster scanned over a sample surface and the incident light that is scattered depends upon the local properties of the sample directly below the tip. The group illuminates the tip with infrared flashes of light only a few femtoseconds in duration. A femtosecond is the unbelievably short temporal duration of a billionth part of a millionth of a second. To detect the scattered light with the highest possible temporal resolution the physicists use incredibly fast sensors that can even observe the oscillations of infrared light.
Like in slow-motion movies, these light flashes allow the researchers to take snapshots of super-fast electronic nano-motion. In a spectacular demonstration experiment the scientists were able to record a 3D movie of electrons moving at the surface of a semiconductor nanowire, which was only accessible in an indirect way up until now.
Such nanostructures, which have been fabricated at the CNR - Istituto Nanoscienze in Pisa, are of great interest for future high-speed electronics. Besides answering technological questions in electronics and photovoltaics, the microscope will also be valuable for a wide range of interdisciplinary applications, which range from providing novel physical insights into exotic materials to understanding biological processes on the molecular scale.
Original publication
Other news from the department science
These products might interest you
DM8000 M & DM12000 M by Leica
See More, Detect Faster
High-throughput Inspection Systems
LUMOS II by Bruker
FT-IR microscopy in the fast lane - the LUMOS II
One infrared microscope for all
alpha300 R by WITec
3D Raman microscopes with unequalled speed, sensitivity and resolution
Visualize and characterize every chemical detail
ZEISS ZEN core by Carl Zeiss
ZEISS ZEN core - Your Software suite for connected microscopy in laboratory and production
The comprehensive solution for imaging, segmentation, data storage and analysis
HYPERION II by Bruker
FT-IR and IR laser imaging (QCL) microscope for research and development
Analyze macroscopic samples with microscopic resolution (5 µm) in seconds
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.