Novel technique opens door to better solar cells
Invention solves long-standing mystery in the physics of condensed matter; enhances understanding about interfaces between materials
With a better understanding of how materials interface, scientists can tweak the properties of different materials more easily, and this opens doors to the development of better solar cells, novel superconductors and smaller hard drives.
The team's research findings were published in Nature Communication.
Solving mysteries in condensed matter physics
Some of the most exciting condensed matter physics problems are found at the interfaces of dissimilar materials.
"If you put two materials together, you can create completely new properties. For instance, two non-conducting, non-magnetic insulators can become conducting and in some cases ferromagnetic and superconducting at their interface," explained Asst Prof Rusydi. "The problem is that we do not fully understand what is happening at the interface yet."
To resolve this long-standing mystery in the physics of condensed matter, the NUS scientists investigated the interface between strontium titanate and lanthanum aluminate, two insulators that become conductors at their interface. In doing this, the team uncovered another mystery.
"For this interface, a theory predicts that the conductivity should be tenfold higher than what is observed. So, 90 per cent of the charge carriers - the electrons - are missing. It is a complete mystery to us why this happened," said Asst Prof Rusydi.
To search for the missing electrons, the scientists employed high-energy reflectivity coupled with spectroscopic ellipsometry. They utilised the bright synchrotron radiation source at the Singapore Synchrotron Light Source at NUS and Deutsches Elektronen-Synchrotron and floodlighted the interface of the two materials with a wide energy range.
The absorption of synchrotron radiation at specific wavelengths revealed the energy state of the corresponding electrons and unveiled their hiding place in the crystal lattice. It was found that only about 10 per cent of the expected electrons are free to migrate to the interface of the two materials to form a conduction band. The remaining 90 per cent are bound in the molecular lattice at higher energy states that were not visible to light sources used in earlier searches.
"This came as a surprise," said Asst Prof Rusydi. "But it also explains why more than just one layer is necessary to fully unfold the interface properties."
He further elaborated, "All the electrons in the material are like small antenna that respond to electromagnetic radiation at different wavelengths, depending on their energy state. If only a part of the electrons migrate to the interface, you need a bigger volume to compensate for the symmetry breaking."
Further research to better understand interfaces
The technique developed by the NUS scientists is the start of their investigation on the basic interface characteristics among materials. The team expects that with a better understanding of interfaces, their properties can be more easily tweaked to desired characteristics.
In the next step of their research, Asst Prof Rusydi and his team will study the interfaces between other materials. They are also working on building a new and unique floodlight facility at the Singapore Synchrotron Light Source in NUS to be used in their research to reveal quantum properties at the interfaces of complex systems.
Most read news
Other news from the department science
These products might interest you
Ionendetektoren für Massenspektroskopie by Hamamatsu Photonics
Innovative detector solutions for
mass spectrometry
Unique devices for the next generation of mass spectral analysis
Mikroskopie-Zubehör by AHF analysentechnik
Optimize your fluorescence microscopy with premium accessories
Discover next generation optical filters and LED light sources
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.