New way to measure electron pair interactions

13-Feb-2014 - Germany

Shoot a beam of light or particles at certain special materials and you will liberate electrons -- pairs of them -- a phenomenon known as "electron pair emission," which can reveal fundamental properties of the solid and reveal information necessary to design novel materials for future applications.

M.Huth/Max Planck

A view inside the photoemission chamber, "Hydra," shows the entry point for one time-of-flight electron spectrometer (on the left, opposite the larger open round hole), as well as a second time-of-flight electron spectrometer (on the left front side looking toward the sample, which is a round silver crystal covered by an ultrathin layer of nickel oxide).

Measuring electron pair emission has always been difficult, however, because they were traditionally done using highly expensive synchrotron light sources, which are available in only a few laboratories worldwide. Nobody has found a way to routinely measure electron pair interactions on a standard lab bench.

Now a team led by researchers at the Max Planck Institute of Microstructure Physics in Halle, Germany has done just that. They developed a new way to measure the emission of electron pairs directly by combining two common laboratory instruments called time-of-flight spectrometers, a setup they describe in the journal Applied Physics Letters, which is produced by AIP Publishing.

"Einstein received the Nobel Prize for his explanation of the photoelectric effect, which was published in 1905. Einstein considered the possibility that the photon energy can be transferred to more than one electron," explained Michael Huth, a postdoctoral researcher at the Max Planck Institute of Microstructure Physics. "The existence of this process provides direct access to the electron correlation strength."

An electron pair is "excited" by a single photon; from an experimental point of view, this requires the combination of a suitable light source and electron spectrometers.

Developing such a setup involved "a significant effort," according to Huth. Comically, the team dubbed their setup's photoemission chamber "Hydra," because its two time-of-flight spectrometers give the chamber an appearance of having multiple heads.

As a proof-of-principle experiment, the team chose to investigate nickel oxide (NiO), which, in theory, should have strong electron correlation effects. While measuring the energy distribution, they were surprised to discover that in contrast to the metal, the energy sum of the electron pair shows no prominent features.

What's the significance? "Our observation is that metals and nickel oxide behave very differently," Huth said. "This implies that our technique allows us to quantify the electron correlation strength."

Quantifying a solid-state material's electron correlation strength is important because it allows researchers to characterize its useful properties, including superconductivity, metal-insulator transition and long-range magnetic ordering. "Our experimental data will guide theory toward understanding the fundamental properties of solids, and one day help to design novel functional materials," Huth noted.

Next, the researchers' sights are set on exploring different materials to gain a more complete picture of electron correlation by running experiments at different photon energies. "We also plan to optimize the efficiency and stability of our new setup for ongoing experiments," Huth said.

Other news from the department science

These products might interest you

NEX CG II

NEX CG II by Applied Rigaku Technologies

Elemental analysis at ppb level for exact results

X-ray fluorescence spectrometers
Micro-Z ULS

Micro-Z ULS by Rigaku

Accurately measure sulphur content in fuels: WDXRF analyser

Reliable routine analyses with 0.3 ppm detection limit and compact design

WDXRF spectrometers
Agera

Agera by HunterLab Europe

Measure color and gloss level simultaneously - in seconds

Easy-to-use colorimeter: standard-compliant, robust and precise

colorimeters
ALPHA II

ALPHA II by Bruker

Chemical analysis made easy: compact FT-IR system

Increase the efficiency of your routine analyses with user-friendly technology

FTIR spectrometers
INVENIO

INVENIO by Bruker

FT-IR spectrometer of the future: INVENIO

Freely upgradeable and configurable FT-IR spectrometer

FTIR spectrometers
NANOPHOX CS

NANOPHOX CS by Sympatec

Particle size analysis in the nano range: Analyzing high concentrations with ease

Reliable results without time-consuming sample preparation

particle analyzers
ZEEnit

ZEEnit by Analytik Jena

Zeeman Technology for Maximum Sensitivity – Matching any Analytical Problem

Transverse-heated graphite furnace for optimum atomization conditions and high sample throughput

AAS spectrometers
SPECORD PLUS

SPECORD PLUS by Analytik Jena

SPECORD PLUS Series - Maximum precision in UV/Vis

The modern classic guarantees the highest quality

PlasmaQuant 9100

PlasmaQuant 9100 by Analytik Jena

PlasmaQuant 9100 Series of ICP-OES Instruments

Reveal the Details That Matter

ICP-OES spectrometer
contrAA 800

contrAA 800 by Analytik Jena

contrAA 800 Series – Atomic Absorption. Redefined

The best of classical atomic absorption and ICP-OES spectrometry are combined in the contrAA 800

ICP-OES spectrometer
Microspectrometer

Microspectrometer by Hamamatsu Photonics

Ultra-compact microspectrometer for versatile applications

Precise Raman, UV/VIS and NIR measurements in portable devices

microspectrometers
ERASPEC

ERASPEC by eralytics

Spectral Fuel Analysis in Seconds with ERASPEC

Fast delivery of over 40 fuel parameters at the push of a button

2060 Raman Analyzer

2060 Raman Analyzer by Metrohm

Self-calibrating inline Raman spectrometer

Analyze solids, liquids and gases - for reproducible, accurate results in the process

S4 T-STAR

S4 T-STAR by Bruker

TXRF spectrometer: Sub-ppb detection limits & 24/7 analytics

Minimal operating costs because no gases, media or lab equipment are required

total reflection x-ray fluorescence spectrometers
S2 PICOFOX

S2 PICOFOX by Bruker

Fast and precise trace element analysis on the move

TXRF technology for minimal samples and maximum efficiency

total reflection x-ray fluorescence spectrometers
ZSX Primus IVi

ZSX Primus IVi by Rigaku

High-precision WDXRF analysis for industrial applications

Maximum sensitivity and throughput for light elements and complex samples

X-ray fluorescence spectrometers
PlasmaQuant MS Elite

PlasmaQuant MS Elite by Analytik Jena

LC-ICP-MS Is the Key to the World of Elemental Species

Highest Sensitivity and Lowest Detection Limits with PlasmaQuant MS Series and PQ LC

novAA®  800

novAA® 800 by Analytik Jena

The Analyzer 4 You - novAA 800-Series

The reliable all-rounder, making routine analysis efficient and cost-effective

SPECTRO ARCOS

SPECTRO ARCOS by SPECTRO Analytical Instruments

The inductively coupled plasma optical emission spectrometer (ICP-OES) for highest demands

The top-of-line SPECTRO ARCOS ICP-OES analyzer evolves elemental analysis to the next level

ICP-OES spectrometer
BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios by Bios Analytique

Specialists in the rental and leasing of scientific equipment for laboratories throughout Europe

Whether you have an unexpected requirement or limited budget, we have the perfect solution for you

lab equipment
Loading...

More news from our other portals

Is artificial intelligence revolutionising chemistry?