Further research on effects of nanomaterials
BASF participates in BMBF research project on safety of nanomaterials
Altogether 16 different materials were examined by the researchers over the last few years, among other things to find out what happens to different nanoparticles when they are inhaled or ingested and how they behave inside the body. Test substances were silicon dioxide (SiO2) and zirconium dioxide (ZrO2), which are applied, for example, in paints to increase their scratch resistance, as well as silver particles (Ag) used in printing inks for solar technology. For the first time, not only the pure particles but also the functionalized particles were tested. In the latter, organic molecules are bound to the surface of the particles to improve properties such as processability, solubility or stability of the products.
The result: “The main factors that determine whether there is a toxic effect are the actual material properties, in this case of silicon dioxide, silver or zirconium dioxide,” explained Dr. Wendel Wohlleben, who headed BASF’ s activities. The company has contributed to the manufacturing and characterization of the nanomaterials, analyzing the lifecycle and toxicity, as well as to the risk assessment. A toxic effect that was the same for all nanomaterials and triggered alone by the small size could not be verified emphasized Wohlleben. “One important result of the study is that an existing toxic effect can be reduced through functionalizing the nanoparticles by adding a functional group of the kind present in the finished product,” he added. This is because potential reactions on the particle surface are shielded by the functional groups. Moreover, some particles are eliminated again from the body more easily.
These findings will also help researchers in risk assessments of other nanomaterials. “If this result is confirmed in further studies, in future we would no longer have to examine all differently functionalized particles of a material to conduct a safety assessment, but could organize the materials into groups,” said Wohlleben. ”A reliable risk assessment would then be easier and take less time.” This is a great advantage, especially when studying the effect of nanoparticles that are inhaled.
Most read news
Topics
Organizations
Other news from the department science
These products might interest you
NANOPHOX CS by Sympatec
Particle size analysis in the nano range: Analyzing high concentrations with ease
Reliable results without time-consuming sample preparation
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.