Professor uses diamond to produce graphene quantum dots and nano-ribbons of controlled structure
Vikas Berry, William H. Honstead professor of chemical engineering, has developed a novel process that uses a diamond knife to cleave graphite into graphite nanoblocks, which are precursors for graphene quantum dots. These nanoblocks are then exfoliated to produce ultrasmall sheets of carbon atoms of controlled shape and size.
By controlling the size and shape, the researchers can control graphene's properties over a wide range for varied applications, such as solar cells, electronics, optical dyes, biomarkers, composites and particulate systems. Their work has been published in Nature Communications.
"The process produces large quantities of graphene quantum dots of controlled shape and size and we have conducted studies on their structural and electrical properties," Berry said.
While other researchers have been able to make quantum dots, Berry's research team can make quantum dots with a controlled structure in large quantities, which may allow these optically active quantum dots to be used in solar cell and other optoelectronic applications.
"There will be a wide range of applications of these quantum dots," Berry said. "We expect that the field of graphene quantum dots will evolve as a result of this work since this new material has a great potential in several nanotechnologies."
It has been know that because of the edge states and quantum confinement, the shape and size of graphene quantum dots dictate their electrical, optical, magnetic and chemical properties. This work also shows proof of the opening of a band-gap in graphene nanoribbon films with a reduction in width. Further, Berry's team shows through high-resolution transmission electron micrographs and simulations that the edges of the produces structures are straight and relatively smooth.
Most read news
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.