New approach to solar cells
Gergely Zimanyi, UC Davis
Conventional solar cells all operate on the same principle of "one photon in, one electron out," said Gergely Zimanyi, professor of physics at UC Davis and principal investigator on the NSF grant. In other words, one particle of light, or photon, hits the solar cell and generates one electron to produce an electrical current.
The efficiency — energy out compared to energy in — of a solar cell operating according to this principle is capped by a theoretical maximum of 31 percent. But by constructing solar cells from extremely small nanoparticles, the UC researchers aim to generate several electrons for each photon, raising the maximum efficiency to between 42 and 65 percent.
The one-photon-in/multiple-electrons-out paradigm has been demonstrated at the Los Alamos National Laboratory, Zimanyi said — but the Los Alamos group did not build a functioning solar cell based on this paradigm. The UC Davis/UC Santa Cruz team includes scientists with experience making solar cells from nanoparticles, giving hope that the group will be able to construct a fully functioning and well-optimized solar cell from germanium and silicon nanoparticles, he said.
The team members are: Zimanyi; UC Davis chemistry professors Susan Kauzlarich and Delmar Larsen; Professor Giulia Galli, who holds a joint appointment in physics and chemistry; Professor Zhaojun Bai, Department of Mathematics and Computer Science; Debashis Paul, professor in the Department of Statistics; and Susan Carter, professor of physics at UC Santa Cruz.
The interdisciplinary nature of the team was crucial to getting the proposal funded, Zimanyi said. "NSF asked for a collaborative effort between materials sciences, chemistry and mathematical sciences," he said.
Zimanyi, Galli and Bai will conduct theoretical and computer-modeling studies, with Paul providing statistical expertise; Kauzlarich's lab will synthesize the new nanoparticles, Larsen's group will characterize them and Carter's lab at UCSC will develop a working device. A prototype cell has been already constructed prior to getting the grant and exhibited an efficiency of about 8 percent, which Zimanyi described as a very encouraging result given the limited resources going into its construction.
The team will collaborate with the California Solar Energy Collaborative, which is based at UC Davis and led by Pieter Stroeve, professor of chemical engineering and materials science.
Other news from the department science
These products might interest you
NANOPHOX CS by Sympatec
Particle size analysis in the nano range: Analyzing high concentrations with ease
Reliable results without time-consuming sample preparation
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.