Smaller is better in the viscous zone

25-Oct-2010 - USA

Being the right size and existing in the limbo between a solid and a liquid state appear to be the secrets to improving the efficiency of chemical catalysts that can create better nanoparticles or more efficient energy sources.

Jei Liu

These are nanotubes.

When matter is in this transitional state, a catalyst can achieve its utmost potential with the right combination of catalyst particle size and temperature, according to a pair of Duke University researchers. A catalyst is an agent or chemical that facilitates a chemical reaction. It is estimated that more than 90 percent of chemical processes used by industry involve catalysts at some point.

This finding could have broad implications in almost every catalyst-based reaction, according to an engineer and a chemist at Duke who reported their findings on line in the American Chemical Society's journal ACS-NANO. The team found that the surface-to-volume ratio of the catalyst particle – its size -- is more important than generally appreciated.

"We found that the smaller size of a catalyst will lead to a faster reaction than if the bulk, or larger, version of the same catalyst is used," said Stefano Curtarolo, associate professor in the Department of Mechanical Engineering and Materials Sciences.

"This is in addition to the usual excess of surface in the nanoparticles," said Curtarolo, who came up with the theoretical basis of the findings three years ago and saw them confirmed by a series of intricate experiments conducted by Jie Liu, Duke professor of chemistry.

"This opens up a whole new area of study, since the thermo-kinetic state of the catalyst has not before been considered an important factor," Curtarolo said. "It is on the face of it paradoxical. It's like saying if a car uses less gas (a smaller particle), it will go faster and further."

Their series of experiments were conducted using carbon nanotubes, and the scientists believe that same principles they described in the paper apply to all catalyst-driven processes.

Liu proved Curtarolo's hypothesis by developing a novel method for measuring not only the lengths of growing carbon nanotubes, but also their diameters. Nanotubes are microscopic "mesh-like" tubular structures that are used in hundreds of products, such as textiles, solar cells, transistors, pollution filters and body armor.

"Normally, nanotubes grow from a flat surface in an unorganized manner and look like a plate of spaghetti, so it is impossible to measure any individual tube," Liu said. "We were able to grow them in individual parallel strands, which permitted us to measure the rate of growth as well as the length of growth."

By growing these nanotubes using different catalyst particle sizes and at different temperatures, Liu was able to determine the "sweet spot" at which the nanotubes grew the fastest and longest. As it turned out, this happened when the particle was in its viscous state, and that smaller was better than larger, exactly as predicted before.

These measurements provided the experimental underpinning of Curtarolo's hypothesis that given a particular temperature, smaller nanoparticles are more effective and efficient per unit area than larger catalysts of the same type when they reside in that dimension between solid and liquid.

"Typically, in this field the experimental results come first, and the explanation comes later," Liu said. "In this case, which is unusual, we took the hypothesis and were able to develop a method to prove it correct in the laboratory."

Other news from the department science

These products might interest you

FIBRETHERM

FIBRETHERM by C. Gerhardt

Automatic Fibre Extraction for Feed Analysis

FIBRETHERM from C. Gerhardt: Efficient – Precise – Method-Compliant

fibre analyzers
Mini-UniPrep™

Mini-UniPrep™ by Cytiva

Improved HPLC Sample Preparation

Save 66 % sample preparation time and reduce costs by 40 %

Glass and quartz microfiber filter

Glass and quartz microfiber filter by Cytiva

Request a glass microfiber sample pack to meet your battery development needs

Delivering efficient and consistent results

filter materials
GF/C and 934-AH RTU (Environmental)

GF/C and 934-AH RTU (Environmental) by Cytiva

Meet wastewater regulations with the right filter

Streamline lab operations and ensure high-quality results

filters
VICI Jour Katalog 15INT

VICI Jour Katalog 15INT by VICI

The VICI Jour Catalog - Accessories for (U)HPLC and Liquid Handling

Capillaries, Tubing, Fittings, Filters, Safety-Products, Tools and much more

chromatography accessories
Hahnemühle LifeScience Catalogue Industry & Laboratory

Hahnemühle LifeScience Catalogue Industry & Laboratory by Hahnemühle

Wide variety of Filter Papers for all Laboratory and Industrial Applications

Filtration Solutions in the Life Sciences, Chemical and Pharmaceutical Sectors

Whatman filtration product guide

Whatman filtration product guide by Cytiva

New filtration catalog - a wealth of information on 286 pages

Discover the perfect filters for your laboratory application

filters
Loading...

Most read news

More news from our other portals

All FT-IR spectrometer manufacturers at a glance