Buried silver nanoparticles improve organic transistors
A team led by Professors Paddy Chan and Dennis Leung of the Hong Kong Polytechnic University has shown that a simple layer of silver nanoparticles placed between two layers of the organic semiconductor pentacene improves performance just as much as painstakingly placing nanoparticles atop a tiny floating gate region.
Because certain metal nanoparticles trap electric charges very effectively, they are becoming a popular additive for enhancing transistor performance and producing thinner transistors. Sandwiching a layer of nanoparticles is much more compatible with the low-cost, continuous roll-to-roll fabrication techniques used to make organic electronics than the more intricate patterning required to put material just in the transistor gate area.
Moreover, Chan's group showed that the thickness of the nanoparticle layer changes the device performance in predictable ways that can be used to optimize transistor performance to meet application requirements.
Transistors made with a 1-nanometer nanoparticle layer, for example, have stable memory that lasts only about three hours, which would be suitable for memory buffers. Transistors having a 5-nanometer-thick layer are more conventional and retain their charge for a much longer time.
"We believe that organic memory has a very high potential for use in next-generation memory devices -- such as touchscreens and electronic paper -- where their flexibility and low-cost are most important," said Dr. Sumei Wang, a postdoctoral research fellow of the team.
Organizations
Other news from the department science
These products might interest you
NANOPHOX CS by Sympatec
Particle size analysis in the nano range: Analyzing high concentrations with ease
Reliable results without time-consuming sample preparation
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
DynaPro Plate Reader III by Wyatt Technology
Screening of biopharmaceuticals and proteins with high-throughput dynamic light scattering (DLS)
Efficiently characterize your sample quality and stability from lead discovery to quality control
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.