A pioneering spectrometer for hard X-rays at European XFEL

"The new spectrometer opens up completely new spectroscopic possibilities at high X-ray energies"

22-Apr-2025
European XFEL

The new Laue spectrometer in position at the FXE instrument of European XFEL. The crystal analyzer in the centre of the image is clearly visible.

Researchers at the European XFEL have developed a new device for X-ray measurements at high photon energies–a so-called Laue spectrometer. It enables X-ray light with photon energies of over 15 kiloelectronvolts to be detected with improved efficiency and highest precision. This is important for researching technically significant materials that, for example, transport electricity without losses or ensure that chemical processes run more efficiently.

© European XFEL

Contrary to regular spectrometer the new Laue spectrometer is diffracting the X-ray beams (red arrows) by atomic layers perpendicular to the surface.

To unravel the secrets of the world of atoms, molecules and materials in general, scientists often use special measurement devices known as spectrometers. They work by recording the light that objects emit. From the way in which the objects do that, researchers learn a lot about the physical processes that take place in the materials. Particularly revealing is the research with X-ray light, which penetrates deeply in matter and provides information specific to each atomic species. This light is invisible to our eyes, but can be detected and measured using special spectrometers.

The main components of these devices are usually extremely precisely cut crystals made of silicon or germanium. Traditionally, the X-ray spectrometers work in what is known as Bragg geometry: The X-ray light hits the crystal and is then diffracted by the atomic planes parallel to the surface similarly as mirrors reflect visible light. From the direction and intensity of the scattered radiation, the researchers can draw conclusions about the electronic properties of the materials they are analysing.

A unique characteristic of European XFEL is the ability to provide X-ray light with very high energy. However, as the energy of the X-rays increases, the interaction with the crystals becomes smaller, making the measurements challenging. In this high photon energy regime, a large proportion of the X-ray light simply passes through the crystal unused, which is why the performance of X-ray spectrometers using these analysers, known as Johann or Von Hamos spectrometers, decreases rapidly with increasing X-ray energy. They usually only work well up to a photon energy of around 15 kiloelectronvolts (keV).

Researchers at the FXE instrument at European XFEL have now developed a new spectrometer to obtain meaningful results even at energies well above 15 keV. It works in the so-called Laue geometry. This means that the X-rays pass through the crystal and are diffracted by atomic layers perpendicular to the surface. The higher the X-ray energy, the more efficiently the Laue analyser works. “Our optimised design with a fixed curvature and a short bending radius results in analysers without noticeable surface distortions, which considerably simplifies the setup and measurement with the Laue spectrometer,” says Frederico Lima, scientist at the FXE instrument. The performance of this spectrometer greatly surpasses previous designs with dynamically curved Laue analysers.

The newly developed device called High Energy Laue X-ray Emission Spectrometer (HELIOS) is now installed and available to all users at European XFEL. It provides an extremely high precision of about 1.2 x 10-4 at a photon energy of around 18.6 keV. Compared to conventional spectrometers, it achieves a signal strength that is 4 to 22 times higher. This makes it possible to detect particularly interesting electronic transitions in so-called 4d transition metals, which are otherwise very difficult to measure. The 4d transition metals include technically important elements such as niobium, molybdenum, ruthenium, palladium and silver.

“The new spectrometer opens up completely new spectroscopic possibilities at high X-ray energies, only possible at the European XFEL,” Lima says. Examples include the measurement of photocatalytic properties of nanoparticles containing 4d metals, research into dye sensitisation for solar cell applications, and the investigation of strongly correlated materials that could be used as superconductors or as battery cathodes or anodes for efficient energy storage.

Original publication

Other news from the department science

These products might interest you

NEX CG II

NEX CG II by Applied Rigaku Technologies

Elemental analysis at ppb level for exact results

X-ray fluorescence spectrometers
Micro-Z ULS

Micro-Z ULS by Rigaku

Accurately measure sulphur content in fuels: WDXRF analyser

Reliable routine analyses with 0.3 ppm detection limit and compact design

WDXRF spectrometers
NANOPHOX CS

NANOPHOX CS by Sympatec

Particle size analysis in the nano range: Analyzing high concentrations with ease

Reliable results without time-consuming sample preparation

particle analyzers
Agera

Agera by HunterLab Europe

Save Valuable Time: Color and Gloss Measurement in Record Time

Capture the Color Impression of the Sample Exactly as the Human Eye Perceives It

colorimeters
INVENIO

INVENIO by Bruker

FT-IR spectrometer of the future: INVENIO

Freely upgradeable and configurable FT-IR spectrometer

FTIR spectrometers
ERASPEC

ERASPEC by eralytics

Spectral Fuel Analysis in Seconds with ERASPEC

Fast delivery of over 40 fuel parameters at the push of a button

Microspectrometer

Microspectrometer by Hamamatsu Photonics

Ultra-compact microspectrometer for versatile applications

Precise Raman, UV/VIS and NIR measurements in portable devices

microspectrometers
SPECORD PLUS

SPECORD PLUS by Analytik Jena

SPECORD PLUS Series - Maximum precision in UV/Vis

The modern classic guarantees the highest quality

PlasmaQuant 9100

PlasmaQuant 9100 by Analytik Jena

PlasmaQuant 9100 Series of ICP-OES Instruments

Reveal the Details That Matter

ICP-OES spectrometers
ALPHA II

ALPHA II by Bruker

Chemical analysis made easy: compact FT-IR system

Increase the efficiency of your routine analyses with user-friendly technology

FTIR spectrometers
ZEEnit

ZEEnit by Analytik Jena

Zeeman Technology for Maximum Sensitivity – Matching any Analytical Problem

Transverse-heated graphite furnace for optimum atomization conditions and high sample throughput

AAS spectrometers
contrAA 800

contrAA 800 by Analytik Jena

contrAA 800 Series – Atomic Absorption. Redefined

The best of classical atomic absorption and ICP-OES spectrometry are combined in the contrAA 800

ICP-OES spectrometers
S2 PICOFOX

S2 PICOFOX by Bruker

Fast and precise trace element analysis on the move

TXRF technology for minimal samples and maximum efficiency

total reflection x-ray fluorescence spectrometers
S4 T-STAR

S4 T-STAR by Bruker

TXRF spectrometer: Sub-ppb detection limits & 24/7 analytics

Minimal operating costs because no gases, media or lab equipment are required

total reflection x-ray fluorescence spectrometers
ZSX Primus IVi

ZSX Primus IVi by Rigaku

High-precision WDXRF analysis for industrial applications

Maximum sensitivity and throughput for light elements and complex samples

X-ray fluorescence spectrometers
novAA®  800

novAA® 800 by Analytik Jena

The Analyzer 4 You - novAA 800-Series

The reliable all-rounder, making routine analysis efficient and cost-effective

PlasmaQuant MS Elite

PlasmaQuant MS Elite by Analytik Jena

LC-ICP-MS Is the Key to the World of Elemental Species

Highest Sensitivity and Lowest Detection Limits with PlasmaQuant MS Series and PQ LC

2060 Raman Analyzer

2060 Raman Analyzer by Metrohm

Self-calibrating inline Raman spectrometer

Analyze solids, liquids and gases - for reproducible, accurate results in the process

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios by Bios Analytique

Specialists in the rental and leasing of scientific equipment for laboratories throughout Europe

Whether you have an unexpected requirement or limited budget, we have the perfect solution for you

lab equipment
Quantaurus-QY

Quantaurus-QY by Hamamatsu Photonics

High-speed UV/NIR photoluminescence spectrometer

Precise quantum yield measurements in milliseconds without reference standards

fluorescence spectrometers
Loading...

Most read news

More news from our other portals

See the theme worlds for related content

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
35+ whitepaper
70+ brochures
View topic world
Topic World Spectroscopy

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
35+ whitepaper
70+ brochures