Novel redox-active metal-organic framework as an anode material for Li batteries operating in freezing conditions

Achieved a discharge capacity five times higher than that of graphite anode material, even in environments as low as minus 20 degrees Celsius

27-Aug-2024

The Korea Institute of Energy Research (KIER) has developed a redox-active metal-organic hybrid electrode material (SKIER-5) for Li batteries that remains stable in cold conditions as low as minus 20 degrees Celsius. By addressing the limitations of graphite as an anode material of conventional Li batteries under freezing conditions, SKIER-5 has the potential to be a superior alternative. This novel material can be used in Li batteries for a variety of applications, including electric vehicles, drones, and ultra-small electronic devices, even in low temperatures.

KOREA INSTITUTE OF ENERGY RESEARCH

SKIER-5 developed through the oxidation reaction of trianthrene and nickel ions (from left to right trianthrene, nickel, SKIER-5)

KOREA INSTITUTE OF ENERGY RESEARCH

Group photo of the research team (from left to right Dr. Kanghoon Yim, Dr. Jungjoon Yoo, Dr. Hyunuk Kim)

KOREA INSTITUTE OF ENERGY RESEARCH
KOREA INSTITUTE OF ENERGY RESEARCH

Currently, graphite is the conventional material used for anodes in lithium-ion batteries due to its thermodynamic stability and low cost. However, batteries with graphite anodes have significant drawbacks: their storage capacity sharply decreases at subzero temperatures, and dendrites can form on the anode surface during charging. This can lead to thermal runaway and potential explosions.

A research team led by Dr. Jungjoon Yoo, Dr. Kanghoon Yim, and Dr. Hyunuk Kim at KIER has developed a redox-active conductive metal-organic framework called 'SKIER-5'. This framework is assembled from a trianthrene-based organic ligand and nickel ions. SKIER-5 exhibited a discharge capacity five times higher than that of graphite in subzero environments.

SKIER-5 anode achieved a discharge capacity of 440 mAh/g, surpassing the 375 mAh/g of a graphite electrode at room temperature. Notably, after 1,600 charge-discharge cycles, the capacity increased by approximately 1.5 times (600 mAh/g). This is an exceptional result, as discharge capacity typically decreases with repeated charge-discharge cycles.

The research team confirmed the redox mechanism of SKIER-5 using high flux X-ray analysis at the Pohang Accelerator Laboratory. Unlike graphite, SKIER-5, which includes nickel ions and heteroatoms (N, F, S)-based organic ligands, interacts with Li ions to trigger redox reactions involving electron transfer. This process allows for increased electron storage, leading to a higher discharge capacity.

Notably, SKIER-5 achieved a discharge capacity of 150 mAh/g, which is five times higher than that of graphite at minus 20 degrees Celsius. This enhanced performance is attributed to SKIER-5’s lower minimum energy threshold for initiating chemical reactions compared to graphite. Consequently, SKIER-5 maintains stable performance in low-temperature environments where reaction rate typically decrease.
*Activation Energy (eV): The minimum energy required to initiate a chemical reaction, [SKIER-5 (0.23 eV) < Graphite (0.6 eV)].

The operating principle of SKIER-5 was validated using first-principles calculations based on quantum chemistry. The research team first determined the crystalline structure of SKIER-5, which was consistent with X-ray structural analysis, and predicted lithium adsorption sites to predict the material’s theoretical capacity and reaction voltage via calculation. The predicted values closely matched the experimental results, confirming the origin of the excellent performance of SKIER-5’s as a Li battery anode.

Original publication

Other news from the department science

These products might interest you

Battery Testing Services

Battery Testing Services by Battery Dynamics

Learn more about the performance and service life of your battery cells in less time

Benefit from modern measurement technology and an experienced team

measurement services
Batt-TDS

Batt-TDS by ystral

YSTRAL Batt-TDS mixing and dispersing machine

Boost your battery slurry process

disperser
Loading...

Most read news

More news from our other portals

All FT-IR spectrometer manufacturers at a glance

See the theme worlds for related content

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

25+ products
150+ companies
30+ whitepaper
20+ brochures
View topic world
Topic World Battery Technology

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

25+ products
150+ companies
30+ whitepaper
20+ brochures