Exploring the structures of xenon-containing crystallites
Matic Lozinšek
Since Bartlett’s discovery, which is commemorated with an International Historic Chemical Landmark, hundreds of noble gas compounds have been synthesized, and some crystal structures have been characterized by single-crystal X-ray diffraction. However, noble gas-containing crystals are typically sensitive to moisture in air. This chemical property makes them highly reactive and challenging to handle, requiring special techniques and equipment to grow crystals large enough for X-ray diffraction analysis. Therefore, detailed structures of that first xenon compound and several other noble gas-containing compounds have eluded researchers. Recently, another technique — 3D electron diffraction — has revealed the structures of small nanoscale crystals. These crystallites are stable in air, but the technique hasn’t been widely applied to air-sensitive compounds. So, Lukáš Palatinus, Matic Lozinšek and colleagues wanted to test 3D electron diffraction on crystallites of xenon-containing compounds.
The researchers synthesized three xenon difluoride–manganese tetrafluoride compounds, obtaining individual red crystals and pink crystalline powders. Samples were kept stable by first cooling a holder with liquid nitrogen, adding the sample and then covering the filled holder with multiple protective layers during the transfer into a transmission electron microscope. The team measured the xenon-fluoride (Xe–F) and manganese-fluoride (Mn–F) bond lengths and angles for nanometer-sized crystallites in the pink crystalline powder using 3D electron diffraction. Then the structures were compared to results the team obtained on the larger, micrometer-sized wine-red crystals by single-crystal X-ray diffraction. The two methods were in good agreement, despite small differences, according to the researchers, and the results showed that the structures were:
- Infinite zig zag chains for 3XeF2·2MnF4.
- Rings for XeF2·MnF4.
- Staircase-like double chains for XeF2·2MnF4.
As a result of this successful demonstration of 3D electron diffraction on xenon compounds, the researchers say the technique could be used to discover the structures of XePtF6 and other challenging noble gas compounds that have evaded characterization for decades, as well as other air-sensitive substances.
Original publication
Most read news
Original publication
Klemen Motaln, Kshitij Gurung, Petr Brázda, Anton Kokalj, Kristian Radan, Mirela Dragomir, Boris Žemva, Lukáš Palatinus, Matic Lozinšek; "Reactive Noble-Gas Compounds Explored by 3D Electron Diffraction: XeF2–MnF4 Adducts and a Facile Sample Handling Procedure"; ACS Central Science, 2024-8-14
Topics
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.