Electrolysis meets "Direct Air Capture"
The "Air2Chem" project is developing an economical process for converting CO2 from the air into chemical base materials such as ethylene or syngas
Alongside biomass, carbon dioxide is the most relevant source of sustainable carbon in the chemical industries. While large parts of the demand are already covered by non-avoidable and not sustainable CO2 from cement plants, incineration plants or the paper industry, a supply gap of at least 190 million tons of carbon per year can be identified in the medium term. "Direct Air Capture (DAC)" is one way of making additional sustainable carbon dioxide available for chemical industrial processes, regardless of location. The disadvantage is that technologies for the direct capture of CO2 from the air are currently associated with high investment and operating costs and are therefore not economical.
The aim of the project "Air2Chem: Paired electrosynthesis of basic and valuable chemicals via natural wind driven direct CO2 capture from air using membrane gas absorption and carbonate electrolysis" is to change this. The Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, CO2CirculAir B.V., RWTH Aachen University (Aachener Verfahrenstechnik, Chemische Verfahrenstechnik), GKD – Gebr. Kufferath AG and FXC Engineering GmbH are jointly developing an integrated "Direct Air Carbon Capture and Utilization (DACCU)" process. It combines natural wind driven DAC with electrolytic conversion of the carbonate-containing absorber solution into platform raw materials for the chemical industries, such as carbon monoxide or ethylene.
Thanks to this combination, both the high energy costs for desorption are saved and process chains are simplified in terms of process intensification. At the same time, a value-adding anode process is integrated into the electrolysis process, which enables the production of high-priced chemicals (e.g. formaldehyde, lactate, formate or flycolate) from sustainably available platform chemicals (e.g. methanol via power-to-X processes or glycerine from biodiesel production) with a further reduction in energy requirements in the electrolysis process. At the end of "Air2Chem", a platform technology for the energy-efficient and sustainable production of chemical raw materials and materials is to be developed as an add-on to existing process engineering infrastructures in the chemical industries and piloted on a pilot plant scale.
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.