Pocket-sized invention revolutionizes ability to detect harmful materials

The low-cost cellphone-based Raman spectrometer system can make identifications of unknown biological molecules within minutes

18-Jul-2024
Computer-generated image

Symbolic image

Imagine knowing what berry or mushroom is safe to eat during a hike or swiftly detecting pathogens in a hospital setting that would traditionally require days to identify.

Texas A&M University Engineering

A smartphone records the Raman spectrum of an unknown material (an ethanol solution, in this case) for further analysis.

Identification and detection of drugs, chemicals and biological molecules invisible to the human eye can be made possible through the combined technology of a cellphone camera and a Raman spectrometer — a powerful laser chemical analysis method.

Dr. Peter Rentzepis, a professor in the Department of Electrical and Computer Engineering at Texas A&M University, holds a patent for a hand-held cellphone-based Raman spectrometer system. Rentzepis’ invention allows the user to make non-invasive identifications of potentially harmful chemicals or materials in the field, especially in remote areas where laboratory spectrometers cannot be used due to their size and power needs.

This new Raman spectrometer system integrates lenses, a diode laser and a diffraction grating — a small thin square-shaped surface that scatters light for analysis — in combination with a camera from a cellphone to record the Raman spectrum. Peaks in the spectrum provide detailed data about the chemical composition and molecular structure of a substance, depending on their intensities and positions.

To use the device, a cellphone is placed behind the transmission grating with the camera facing the grating, ready to record the Raman spectrum. A laser shoots a beam into a sample of unknown material, such as a bacterium, on a slide. The camera records the spectrum, and when paired with an appropriate cellphone application/database, this handheld instrument can enable rapid materials identification on site.

Previously, the process of identifying unknown substances involved extensive sampling of biological material and laboratory analysis, which could take several hours or even days. While traditional Raman spectrometers cost up to thousands of dollars, Rentzepis’ invention can be made at a significantly lower cost and can identify materials at a significantly quicker speed.

“It’s a small device that can tell you the composition of a particular system, material or sample,” Rentzepis said. “You can even have it in your pocket.”

Fellow inventors are former graduate students Dr. Dinesh Dhankhar, a system engineer at Thermo Fisher Scientific, and Anushka Nagpal, a process engineer at Intel Corporation.

Funding for this research is administered by the Texas A&M Engineering Experiment Station (TEES), the official research agency for Texas A&M Engineering.

Other news from the department science

These products might interest you

alphaCART New

alphaCART by WITec

Mobile Raman microspectroscopy: laboratory analysis directly on the object

Non-destructive analysis of large, immobile samples that do not fit under a microscope

Raman microscopes
2060 Raman Analyzer

2060 Raman Analyzer by Metrohm

Self-calibrating inline Raman spectrometer

Analyze solids, liquids and gases - for reproducible, accurate results in the process

ReactRaman™ 802L

ReactRaman™ 802L by Mettler-Toledo

ReactRaman in-situ-Measurement of Reaction and Process Trends in Real Time

Raman - Specific Information on Kinetics, Polymorphic Transitions and Critical Process Parameters

Raman spectrometers
Raman-Spektrometer: Cora 5001

Raman-Spektrometer: Cora 5001 by Anton Paar

Compact benchtop Raman spectrometer

Sample verification, sample identification, non-invasive analysis, autofocus, laser class 1

Raman spectrometers
LabRAM Soleil

LabRAM Soleil by Horiba

The fastest automated Raman imaging microscope

Highest light throughput, precision, automation and intelligent software for high-speed-imaging

Raman spectrometers
Loading...

Most read news

More news from our other portals

So close that even
molecules turn red...

See the theme worlds for related content

Topic world Photometry

Photometry, the measurement of light intensity in relation to interaction with molecules, is a key tool in chemistry and life sciences. It enables researchers to determine concentrations of substances in solutions, follow reaction kinetics or check the quality of samples and provides valuable data for analyses, from quality control in the laboratory to clinical diagnostics.

5 products
3 whitepaper
5 brochures
View topic world
Topic world Photometry

Topic world Photometry

Photometry, the measurement of light intensity in relation to interaction with molecules, is a key tool in chemistry and life sciences. It enables researchers to determine concentrations of substances in solutions, follow reaction kinetics or check the quality of samples and provides valuable data for analyses, from quality control in the laboratory to clinical diagnostics.

5 products
3 whitepaper
5 brochures

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures
View topic world
Topic World Spectroscopy

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures