Fluorinated plastics with an expiry date

The fluorine can be recovered from the degraded material to be reincorporated into all kinds of chemicals

15-Jul-2024
UBT

Christoph Fornacon-Wood (left) and Prof. Dr. Alex J. Plajer, in collaboration with researchers from Berlin, have produced a new class of fluorinated polymers.

Chemists at the University of Bayreuth, in collaboration with researchers from Berlin, have produced a new class of fluorinated polymers that degrade 20 times faster than their non-fluorinated equivalents. These results can help to prevent the accumulation of the industrially used fluorine compounds PFAS, also known as "forever chemicals", in the environment.

The majority of consumer goods containing fluorinated plastics, such as Teflon pans, currently end up in landfill sites: As a result, the polymers end up in the environment. These potentially toxic compounds accumulate there so that they are now detectable almost everywhere. A research team involving Christoph Fornacon-Wood and Prof. Dr. Alex J. Plajer from the Department of Macromolecular Chemistry at the University of Bayreuth has tackled this problem. The study has now been published in the journal Chemical Communications.

The researchers have succeeded in producing a new class of fluorinated polymers that contain ester bonds. Ester bonds in polymers, i.e. plastics, facilitate degradation; however, fluorinated polyesters are very rare.

Like ordinary fluorinated plastics, this new class of polymers also has non-stick properties. In addition, the new polymers can be easily degraded again via the ester bonds. "Fluorine atoms normally slow down degradation, but here it is actually accelerated by the fluorine in the material," says Plajer. The fluorine can then be recovered from the degraded material to be reincorporated into all kinds of chemicals.

"The design of future fluorinated polymers should include an integrated option for degradation and recycling to enable a sustainable circular economy for fluorine," says Fornacon-Wood. This is because fluorine is a limited resource and could become rare and therefore expensive in the future without recovery.

The results of the study were produced in collaboration with the Federal Institute for Materials Research and Testing (BAM) and the Free University of Berlin.

Original publication

Other news from the department science

These products might interest you

Eclipse

Eclipse by Wyatt Technology

FFF-MALS system for separation and characterization of macromolecules and nanoparticles

The latest and most innovative FFF system designed for highest usability, robustness and data quality

Spinsolve Benchtop NMR

Spinsolve Benchtop NMR by Magritek

Spinsolve Benchtop NMR

Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance

HYPERION II

HYPERION II by Bruker

FT-IR and IR laser imaging (QCL) microscope for research and development

Analyze macroscopic samples with microscopic resolution (5 µm) in seconds

FT-IR microscopes
Loading...

Most read news

More news from our other portals

So close that even
molecules turn red...