Fluorinated plastics with an expiry date
The fluorine can be recovered from the degraded material to be reincorporated into all kinds of chemicals
The majority of consumer goods containing fluorinated plastics, such as Teflon pans, currently end up in landfill sites: As a result, the polymers end up in the environment. These potentially toxic compounds accumulate there so that they are now detectable almost everywhere. A research team involving Christoph Fornacon-Wood and Prof. Dr. Alex J. Plajer from the Department of Macromolecular Chemistry at the University of Bayreuth has tackled this problem. The study has now been published in the journal Chemical Communications.
The researchers have succeeded in producing a new class of fluorinated polymers that contain ester bonds. Ester bonds in polymers, i.e. plastics, facilitate degradation; however, fluorinated polyesters are very rare.
Like ordinary fluorinated plastics, this new class of polymers also has non-stick properties. In addition, the new polymers can be easily degraded again via the ester bonds. "Fluorine atoms normally slow down degradation, but here it is actually accelerated by the fluorine in the material," says Plajer. The fluorine can then be recovered from the degraded material to be reincorporated into all kinds of chemicals.
"The design of future fluorinated polymers should include an integrated option for degradation and recycling to enable a sustainable circular economy for fluorine," says Fornacon-Wood. This is because fluorine is a limited resource and could become rare and therefore expensive in the future without recovery.
The results of the study were produced in collaboration with the Federal Institute for Materials Research and Testing (BAM) and the Free University of Berlin.
Original publication
Other news from the department science
These products might interest you
Spinsolve Benchtop NMR by Magritek
Spinsolve Benchtop NMR
Spinsolve is a revolutionary multinuclear NMR spectrometer that provides the best performance
Eclipse by Wyatt Technology
FFF-MALS system for separation and characterization of macromolecules and nanoparticles
The latest and most innovative FFF system designed for highest usability, robustness and data quality
HYPERION II by Bruker
FT-IR and IR laser imaging (QCL) microscope for research and development
Analyze macroscopic samples with microscopic resolution (5 µm) in seconds
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.