How can Surface Morphology Change Selectivity in Electrocatalysis?
Catalyst roughness as a key factor
© Dr. Vanessa Bukas, FHI
Catalysis plays a pivotal role in the chemical industry, significantly influencing numerous facets of everyday life such as plastic generation, drug development, and the manufacture of fertilizers. Heterogeneous electrocatalysis, in particular, is at the heart of developing sustainable energy technologies as it enables the carbon-free production of fuels and chemicals through renewable electricity. Here, chemical transformations require only mild conditions of temperature and pressure as they are driven by charge transfer at the solid-liquid interface.
One of the key objectives of the team´s research is to elucidate catalyst selectivity, the origin of which often remains poorly understood especially in the field of electrocatalysis.
This analysis focuses on a microscopic mechanism where a certain reaction intermediate escapes the catalyst surface to be detected as an early, partially-converted product. A new, multi-scale kinetic model shows how selectivity depends upon the rate of species’ transport through the electrolyte and quantifies the influence from the density of catalytically active sites, also known as catalyst roughness. Despite its simplicity, the model is able to reproduce a series of trends found in the experimental literature.
This result demonstrates the generality of the proposed mechanism and establishes roughness as a key descriptor of catalyst morphology across all relevant length scales.The insight improves fundamental understanding of reaction mechanisms in electrocatalysis, while suggesting new paths ahead for optimizing catalyst selectivity and long-term operation.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.