Researchers 3D print components for a portable mass spectrometer

Lightweight and inexpensive, miniaturized mass filters are a key step toward portable mass spectrometers that could identify unknown chemicals in remote settings

08-Jan-2024

mass spectrometers, devices that identify chemical substances, are widely used in applications like crime scene analysis, toxicology testing, and geological surveying. But these machines are bulky, expensive, and easy to damage, which limits where they can be effectively deployed.

Courtesy of Luis Fernando Velásquez-García, Colin Eckhoff, et al

This photo shows an example of a 3D printed miniaturized quadrupole mass filter. They can be fabricated in a matter of hours for a few dollars.

Using additive manufacturing, MIT researchers produced a mass filter, which is the core component of a mass spectrometer, that is far lighter and cheaper than the same type of filter made with traditional techniques and materials.

Their miniaturized filter, known as a quadrupole, can be completely fabricated in a matter of hours for a few dollars. The 3D-printed device is as precise as some commercial-grade mass filters that can cost more than $100,000 and take weeks to manufacture.

Built from durable and heat-resistant glass-ceramic resin, the filter is 3D printed in one step, so no assembly is required. Assembly often introduces defects that can hamper the performance of quadrupoles.

This lightweight, cheap, yet precise quadrupole is one important step in Luis Fernando Velásquez-García’s 20-year quest to produce a 3D-printed, portable mass spectrometer.

“We are not the first ones to try to do this. But we are the first ones who succeeded at doing this. There are other miniaturized quadrupole filters, but they are not comparable with professional-grade mass filters. There are a lot of possibilities for this hardware if the size and cost could be smaller without adversely affecting the performance,” says Velásquez-García, a principal research scientist in MIT’s Microsystems Technology Laboratories (MTL) and senior author of a paper detailing the miniaturized quadrupole. 

For instance, a scientist could bring a portable mass spectrometer to remote areas of the rainforest, using it to rapidly analyze potential pollutants without shipping samples back to a lab. And a lightweight device would be cheaper and easier to send into space, where it could monitor chemicals in Earth’s atmosphere or on those of distant planets.

Velásquez-García is joined on the paper by lead author Colin Eckhoff, an MIT graduate student in electrical engineering and computer science (EECS); Nicholas Lubinsky, a former MIT postdoc; and Luke Metzler and Randall Pedder of Ardara Technologies. The research is published in Advanced Science.

Size matters

At the heart of a mass spectrometer is the mass filter. This component uses electric or magnetic fields to sort charged particles based on their mass-to-charge ratio. In this way, the device can measure the chemical components in a sample to identify an unknown substance.

A quadrupole, a common type of mass filter, is composed of four metallic rods surrounding an axis. Voltages are applied to the rods, which produce an electromagnetic field. Depending on the properties of the electromagnetic field, ions with a specific mass-to-charge ratio will swirl around through the middle of the filter, while other particles escape out the sides. By varying the mix of voltages, one can target ions with different mass-to-charge ratios.

While fairly simple in design, a typical stainless-steel quadrupole might weigh several kilograms. But miniaturizing a quadrupole is no easy task. Making the filter smaller usually introduces errors during the manufacturing process. Plus, smaller filters collect fewer ions, which makes chemical analysis less sensitive.

“You can’t make quadrupoles arbitrarily smaller — there is a tradeoff,” Velásquez-García adds.

His team balanced this tradeoff by leveraging additive manufacturing to make miniaturized quadrupoles with the ideal size and shape to maximize precision and sensitivity.

They fabricate the filter from a glass-ceramic resin, which is a relatively new printable material that can withstand temperatures up to 900 degrees Celsius and performs well in a vacuum. 

The device is produced using vat photopolymerization, a process where a piston pushes into a vat of liquid resin until it nearly touches an array of LEDs at the bottom. These illuminate, curing the resin that remains in the minuscule gap between the piston and the LEDs. A tiny layer of cured polymer is then stuck to the piston, which rises up and repeats the cycle, building the device one tiny layer at a time. 

“This is a relatively new technology for printing ceramics that allows you to make very precise 3D objects. And one key advantage of additive manufacturing is that you can aggressively iterate the designs,” Velásquez-García  says.

Since the 3D printer can form practically any shape, the researchers designed a quadrupole with hyperbolic rods. This shape is ideal for mass filtering but difficult to make with conventional methods. Many commercial filters employ rounded rods instead, which can reduce performance. 

They also printed an intricate network of triangular lattices surrounding the rods, which provides durability while ensuring the rods remain positioned correctly if the device is moved or shaken.

To finish the quadrupole, the researchers used a technique called electroless plating to coat the rods with a thin metal film, which makes them electrically conductive. They cover everything but the rods with a masking chemical and then submerge the quadrupole in a chemical bath heated to a precise temperature and stirring conditions. This deposits a thin metal film on the rods uniformly without damaging the rest of the device or shorting the rods.

“In the end, we made quadrupoles that were the most compact but also the most precise that could be made, given the constraints of our 3D printer,” Velásquez-García says.

Maximizing performance

To test their 3D-printed quadrupoles, the team swapped them into a commercial system and found that they could attain higher resolutions than other types of miniature filters. Their quadrupoles, which are about 12 centimeters in length, are one-quarter the density of comparable stainless-steel filters.

In addition, further experiments suggest that their 3D-printed quadrupoles could achieve precision that is on par with that of largescale commercial filters.

In the future, the researchers plan to boost the quadrupole’s performance by making the filters longer. A longer filter can enable more precise measurements since more ions that are supposed to be filtered out will escape as the chemical travels along its length. They also intend to explore different ceramic materials that could better transfer heat.

“Our vision is to make a mass spectrometer where all the key components can be 3D printed, contributing to a device with much less weight and cost without sacrificing performance. There is still a lot of work to do, but this is a great start,” Velásquez-Garcia adds.

Original publication

Other news from the department science

These products might interest you

isoprime precisION

isoprime precisION by Elementar Analysensysteme

isoprime precisION stable isotope ratio mass spectrometer

The most flexible, yet powerful isotope ratio mass spectrometer ever created

IR mass spectrometers
HPR-20 OEMS, Online Electrochemical Mass Spectrometer

HPR-20 OEMS, Online Electrochemical Mass Spectrometer by Hiden Analytical

Online monitoring and quantification of evolved gases and vapours from electrochemical processes

A complete gas analysis solution, designed to integrate seamlessly with electrochemical applications

IonTamer ToF MS

IonTamer ToF MS by Spacetek Technology

IonTamer instruments are time-of-flight residual gas analysers (TOF-RGA) for the analysis of gases

Compact Time-of-flight residual gas analyzer (TOF-RGA) for process analysis

Residual gas analyzers
PlasmaQuant MS Elite

PlasmaQuant MS Elite by Analytik Jena

LC-ICP-MS Is the Key to the World of Elemental Species

Highest Sensitivity and Lowest Detection Limits with PlasmaQuant MS Series and PQ LC

NexION® 5000

NexION® 5000 by PerkinElmer

NexION 5000 Multi-Quadrupole ICP Mass Spectrometer

NexION 5000 Multi-Quadrupole ICP Mass Spectrometer

ICP mass spectrometers
Xevo TQ Absolute

Xevo TQ Absolute by Waters

A new Tandem Quadrupole Mass Spectrometer for Quantification with Absolute power

Absolute performance, efficiency, productivity, and confidence for your most challenging compounds

mass spectrometers
CATLAB Catalysis and Thermal Analysis

CATLAB Catalysis and Thermal Analysis by Hiden Analytical

A system for catalyst characterisation, kinetic and thermodynamic measurements

Integrated Microreactor-Mass Spectrometer for Reaction Testing, TPD/R/O and Pulse Chemisorption.

mass spectrometers
HPR-20 R&D

HPR-20 R&D by Hiden Analytical

A specialist benchtop triple filter mass spectrometer for the monitoring of evolved gases & vapours

Providing improved resolution & abundance sensitivity with an ultimate detection limit of 5 ppb sub

quadrupole mass spectrometers
iCAP RQ single Quadrupole ICP-MS

iCAP RQ single Quadrupole ICP-MS by Thermo Fisher Scientific

Robust ICP-MS with ease of use and high productivity for routine analysis

A complete multi-element analysis solution for your high-throughput routine laboratory

ICP mass spectrometers
iCAP TQ Triple Quadrupole ICP-MS

iCAP TQ Triple Quadrupole ICP-MS by Thermo Fisher Scientific

Overcome unexpected interferences, reduce detection limits and improve data quality

Ultralow limits of detection with simplicity - even for the most challenging analytical applications

ICP mass spectrometers
BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios

BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios by Bios Analytique

Specialists in the rental and leasing of scientific equipment for laboratories throughout Europe

Whether you have an unexpected requirement or limited budget, we have the perfect solution for you

lab equipment
Thermo Scientific TSQ Triple Quadrupole Mass Spectrometry Systems

Thermo Scientific TSQ Triple Quadrupole Mass Spectrometry Systems by Thermo Fisher Scientific

Confident quantitation with triple quadrupole LC-MS systems

Mass Spectrometry Systems

triple quadrupole mass spectrometers
TSQ 9610 GC-MS/MS

TSQ 9610 GC-MS/MS by Thermo Fisher Scientific

TSQ 9610 GC-MS/MS for superb sensitivity and selectivity with outstanding reliable productivity

Eliminate unnecessary, unplanned instrument downtime, save helium and maximize productivity

triple quadrupole mass spectrometers
Orbitrap Exploris GC Mass Spectrometer

Orbitrap Exploris GC Mass Spectrometer by Thermo Fisher Scientific

Orbitrap Exploris GC-MS simplifies operations and offers new opportunities for analytical testing

Keep pace with changing demands, maximize system uptime, and expand laboratory capability.

orbitrap mass spectrometers
expression® Compact Mass Spectrometer

expression® Compact Mass Spectrometer by Advion Interchim Scientific

Mass Spectrometry for Chemists: Fast, Easy, Prep-Free Reaction Monitoring at the Bench

Featuring a variety of sample introduction techniques that also allow TLC/MS & direct probe analysis

mass spectrometers
JEOL JMS-T2000GC AccuTOF GC-Alpha Time-of-Flight Mass Spectrometer

JEOL JMS-T2000GC AccuTOF GC-Alpha Time-of-Flight Mass Spectrometer by JEOL

A new era of mass spectrometry for your fast forward daily lab routine:
Welcome JEOL AccuTOF GC-Alpha

Stop wrong hypotheses and uneconomic loops! Precise data without compromise is now.

TOF mass spectrometers
Loading...

More news from our other portals

Is artificial intelligence revolutionising chemistry?

See the theme worlds for related content

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures
View topic world
Topic World Spectroscopy

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures

Topic World Mass Spectrometry

Mass spectrometry enables us to detect and identify molecules and reveal their structure. Whether in chemistry, biochemistry or forensics - mass spectrometry opens up unexpected insights into the composition of our world. Immerse yourself in the fascinating world of mass spectrometry!

35+ products
5+ whitepaper
30+ brochures
View topic world
Topic World Mass Spectrometry

Topic World Mass Spectrometry

Mass spectrometry enables us to detect and identify molecules and reveal their structure. Whether in chemistry, biochemistry or forensics - mass spectrometry opens up unexpected insights into the composition of our world. Immerse yourself in the fascinating world of mass spectrometry!

35+ products
5+ whitepaper
30+ brochures