A miniature magnetic resonance imager made of diamond
Quantum sensors make microscale NMR spectroscopy possible
Nuclear magnetic resonance (NMR) is an important imaging method in research which can be used to visualize tissue and structures without damaging them. The technique is better known from the medical field as Magnetic Resonance Imaging (MRI), where the patient is moved into a bore of a large magnet on a table. The MRI device creates a very strong magnetic field which interacts with the tiny magnetic fields of the hydrogen nuclei in the body. Since the hydrogen atoms are distributed in a particular way amongst different types of tissues, it becomes possible to differentiate organs, joints, muscles and blood vessels.
NMR methods can also be used to visualize the diffusion of water and other elements. Research for example often involves observing the behavior of carbon or lithium in order to explore the structures of enzymes or processes in batteries. "Existing NMR methods provide good results, for example when it comes to recognizing abnormal processes in cell colonies," says Dominik Bucher, Professor for Quantum Sensing at TUM. "But we need new approaches if we want to explain what happens in the microstructures within the single cells."
Sensors made of diamond
The research team produced a quantum sensor made of synthetic diamond for this purpose. "We enrich the diamond layer, which we provide for the new NMR method, with special nitrogen and carbon atoms already during growth," explains Dr. Peter Knittel of the Fraunhofer Institute for Applied Solid State Physics (IAF).
After growth, electron irradiation detaches individual carbon atoms from the diamond's perfect crystal lattice. The resulting defects arrange themselves next to the nitrogen atoms - a so-called nitrogen-vacancy center has been created. Such vacancies have special quantum mechanical properties needed for sensing. "Our processing of the material optimizes the duration of the quantum states, which allows the sensors to measure for longer," adds Knittel.
Quantum sensors pass the first test
The quantum state of the nitrogen-vacancy centers interacts with magnetic fields. "The MRI signal from the sample is then converted into an optical signal which we can detect with a high degree of spatial resolution," Bucher explains.
In order to test the method, the TUM scientists placed a microchip with microscopic water-filled channels on the diamond quantum sensor. "This allows us to simulate microstructures of a cell," says Bucher. The researchers were able to successfully analyze the diffusion of water molecules within the microstructure.
In the next step the researchers want to develop the method further to enable the investigation of microstructures in single living cells, tissue sections or the ion mobility of thin-film materials for battery applications. "The ability of NMR and MRI techniques to directly detect the mobility of atoms and molecules makes them absolutely unique compared to other imaging methods," says Prof. Maxim Zaitsev of the University of Freiburg. "We now have found a way, how their spatial resolution, which is currently often deemed insufficient, can be significantly improved in future."
Original publication
Original publication
Other news from the department science
These products might interest you
SprayMaster inspex by LaVision
Quality Control for Your Spraying Process Through Digital Spray and Particle Analysis
Reliable, Automated, Digital - The Geometry Measurement of Your Spraying Process in Real Time
VEGAPULS | VEGABAR | VEGASWING by VEGA Grieshaber
Cyber-safe level measurement - here's how it works
Find out more about the unique sensor for liquid and solid media
FireSting-PRO by PyroScience
New fiber optic measuring device: Precise measurements even in the smallest volumes
Measure pH, oxygen and temperature even under sterile conditions
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.
Most read news
More news from our other portals
See the theme worlds for related content
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.
Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.