Intelligent Textiles as Protection against PAH Toxins
High Market Potential for Intelligent Textiles Expected
The innovative protection concept of the new suits includes high-materials and intelligent monitoring: Modern nonwovens, as a central component of the protective suits, effectively prevent skin contact with the pollutants. Ultraviolet sensors are also integrated into the fabrics to determine when the textile protective shield is saturated with PAH and needs to be replaced. This provides double safety for rescue personnel. The new protective clothing has already passed the first tests in fire containers.
PAK-Accumulation over a Lifetime of Work Increases Cancer Risk
“On a single job, it may only be a few micrograms of PAH that get onto the skin through openings in the protective suit,” explains Felix Spranger, Group Manager Gas and Particle Filtration at Fraunhofer IWS. “The treacherous aspect of PAH is that they can continue to accumulate in the firefighters' bodies over an entire working life. Studies from Germany and the U.S. have shown increased incidences of cancer in this occupational group. Therefore, it was important to find solutions incorporating new technological approaches such as smart textiles.” For this purpose, Fraunhofer IWS joined forces with four other partners in 2020 to form the project “3D-Funktionsvliesstoffe mit integrierter Gassensorik für die Schutzbekleidung von Einsatzkräften” (3D-PAKtex, Engl: “3D functional nonwovens with integrated gas sensor technology for the protective clothing of emergency personnel”). To protect firefighters from the harmful PAH in flue gases and soot swirls in burning houses in the future, the collaborative partners pursued a two-pronged concept: on the one hand, the focus was on the development of fleece-based new filters, and on the other hand, on a sensor concept to monitor their functionality.
Activated Carbon Fleeces Filter Ring Molecules from Flue Gas
Fraunhofer IWS first identified suitable porous activated carbons that bind PAH particularly well. Project partner Norafin fixed these adsorbents with special binders in nonwovens optimized for fire applications. Norafin's partner S-GARD integrated the new additional nonwovens into a demonstration suit. The manufacturer added small closure pockets at sleeve openings, waistbands, and other points, which can accommodate the new additional filters using press studs at those points where, in the worst case, smoke gases could still enter the suit despite all insulation. If smoke gas flows past these spots, the fleece binds the toxins.
In addition, project partner JLM Innovation equipped the new filter fleeces with specifically engineered monitoring sensors based on fluorescence spectroscopy. These mini-spectrometers emit ultraviolet light of a precisely defined wavelength. When these UV rays hit PAH, the ring molecules first absorb their energy and then send back other UV rays at a slightly different wavelength. The sensors measure the returned light: The more intense, the higher the PAH concentration in the fleece. An electronic control unit in the firefighter's breast pocket evaluates this data and sends it to a smartphone via Bluetooth. The development and implementation of the repective software was accomplished by ATS Elektronik. It enables the rescuers to see in real-time how their PAH filters are filling up and when they need to be replaced.
In laboratory tests, the new nonwoven activated carbon filters have significantly reduced the flue gas PAH load. This was followed by practical simulations in fire containers: Experienced testers donned the suit prototypes, and set fire to mattresses, then rubber tires and other test objects in a shielded container to try out the new protective clothing in different fire scenarios.
“We will thoroughly evaluate these findings and continue to monitor the market to make a well-founded decision on possible series production,” announced Jonas Kuschnir of S-GARD. The new protective approach against PAHs entails certain additional costs, but the project’s results were promising.
High Market Potential for Intelligent Textiles Expected
Whatever the outcome of this decision, “3D-PAKtex” has, in any case, led to a considerable gain in expertise for the collaborative partners. The topic will also continue to occupy Fraunhofer IWS. Felix Spranger: “We still see some approaches, for example, to further improve the new protection technology's sensors and interfaces. From feedback, we know that industry partners still perceive great potential in such smart textiles, even beyond protective firefighting clothing.”
This is also consistent with the findings of international observers. For example, analysts at the British market research company IDTechEx expect the market for electronically enhanced or “smart” textiles to grow to the equivalent of around 713 million euros by 2033. Annual growth rates averaging 3.8 percent are expected.
Project Partners “3D-PAKtex”
- Fraunhofer IWS contributes its expertise in the selection of filter materials and analytics
- Norafin Industries from Mildenau in the Ore Mountains produces technical textiles
- Hubert Schmitz (“S-GARD”) from Heinsberg produces protective clothing for firefighters
- JLM Innovation from Tübingen is dedicated to sensor technology in intelligent textiles
- ATS Elektronik developed the required software in Wunstorf, Germany
.
Topics
Organizations
Other news from the department science
These products might interest you
ERASPEC by eralytics
Spectral Fuel Analysis in Seconds with ERASPEC
Fast delivery of over 40 fuel parameters at the push of a button
Agera by HunterLab Europe
Measure color and gloss level simultaneously - in seconds
Easy-to-use colorimeter: standard-compliant, robust and precise
Microspectrometer by Hamamatsu Photonics
Ultra-compact microspectrometer for versatile applications
Precise Raman, UV/VIS and NIR measurements in portable devices
INVENIO by Bruker
FT-IR spectrometer of the future: INVENIO
Freely upgradeable and configurable FT-IR spectrometer
ALPHA II by Bruker
Chemical analysis made easy: compact FT-IR system
Increase the efficiency of your routine analyses with user-friendly technology
PlasmaQuant 9100 by Analytik Jena
PlasmaQuant 9100 Series of ICP-OES Instruments
Reveal the Details That Matter
SPECORD PLUS by Analytik Jena
SPECORD PLUS Series - Maximum precision in UV/Vis
The modern classic guarantees the highest quality
ZEEnit by Analytik Jena
Zeeman Technology for Maximum Sensitivity – Matching any Analytical Problem
Transverse-heated graphite furnace for optimum atomization conditions and high sample throughput
contrAA 800 by Analytik Jena
contrAA 800 Series – Atomic Absorption. Redefined
The best of classical atomic absorption and ICP-OES spectrometry are combined in the contrAA 800
NANOPHOX CS by Sympatec
Particle size analysis in the nano range: Analyzing high concentrations with ease
Reliable results without time-consuming sample preparation
S2 PICOFOX by Bruker
Fast and precise trace element analysis on the move
TXRF technology for minimal samples and maximum efficiency
S4 T-STAR by Bruker
TXRF spectrometer: Sub-ppb detection limits & 24/7 analytics
Minimal operating costs because no gases, media or lab equipment are required
2060 Raman Analyzer by Metrohm
Self-calibrating inline Raman spectrometer
Analyze solids, liquids and gases - for reproducible, accurate results in the process
PlasmaQuant MS Elite by Analytik Jena
LC-ICP-MS Is the Key to the World of Elemental Species
Highest Sensitivity and Lowest Detection Limits with PlasmaQuant MS Series and PQ LC
novAA® 800 by Analytik Jena
The Analyzer 4 You - novAA 800-Series
The reliable all-rounder, making routine analysis efficient and cost-effective
Micro-Z ULS by Rigaku
Accurately measure sulphur content in fuels: WDXRF analyser
Reliable routine analyses with 0.3 ppm detection limit and compact design
ZSX Primus IV/IVi by Rigaku
High-precision WDXRF analysis for industrial applications
Maximum sensitivity and throughput for light elements and complex samples
BIOS ANALYTIQUE - Soluciones de Renting y Leasing para laboratorios by Bios Analytique
Specialists in the rental and leasing of scientific equipment for laboratories throughout Europe
Whether you have an unexpected requirement or limited budget, we have the perfect solution for you
SPECTRO ARCOS by SPECTRO Analytical Instruments
The inductively coupled plasma optical emission spectrometer (ICP-OES) for highest demands
The top-of-line SPECTRO ARCOS ICP-OES analyzer evolves elemental analysis to the next level
NEX CG II by Applied Rigaku Technologies
Elemental analysis at ppb level for exact results
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.
Most read news
More news from our other portals
See the theme worlds for related content
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.
Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.