Benchtop NMR spectroscopy can accurately analyse pyrolysis oils

More accessible analysis could help develop the potential of bio-oils as an alternative to fossil fuels

12-Sep-2023
Computer-generated image

Symbolic image

A team of researchers at Aston University has demonstrated that benchtop spectrometers are capable of analysing pyrolysis bio-oils just as well as far more expensive, high-field spectrometers.

Bio-oils resulting from the intense heating (pyrolysis) of industrial or agricultural by-products, are increasingly seen as potential alternatives to fossil fuels. But the stability and consequent treatment of these bio-oils depends entirely on their composition; and since they are often mixtures of many dozens, or hundreds, of different compounds, analysing such complex mixtures is not simple – or cheap.

Dr Robert Evans, Senior Lecturer in Physical Chemistry at Aston University, explains: “The composition of any pyrolysis bio-oil is absolutely key to future use. For example if there are oxygen-containing chemicals in the oil, that will make the oil more corrosive and it will be more unstable. So in particular we need to know if carbonyl groups are present - where oxygen and carbon atoms are bonded together - as these can have a major impact.”

A leading method of analysis is high-field nuclear magnetic resonance (NMR) spectroscopy, which gives a detailed breakdown of the identity and concentration of chemical species present in any sample. However these large high-field NMR spectrometry machines cost in the range of £600,000-£10million and require a supply of expensive cryogens and solvents, so are generally only found in the very biggest research facilities.

The team at Aston, led by Dr Evans, set out to see if ‘low-field’, or benchtop, NMR spectrometers, could analyse pyrolysis oils well enough to produce the necessary detailed information. Benchtop NMR spectrometers use permanent magnets, which don’t require cryogenic cooling, so cost much less to purchase and maintain. However, using lower strength magnets comes at the cost of lower sensitivity and poorer resolution. While they can find some use as research instruments, they are also commonly found in teaching laboratories.

The study, carried out with collaborators at the University of Tennessee, tested pyrolysis oils produced from a number of different plants, and compared the results from benchtop spectrometers to both high-field spectrometers and other methods of analysis. They found that the benchtop machine estimates compared favourably with titration analysis for overall carbonyl content, as well as matching high-field spectrometry for the specific identification of carbonyl groups such as ketones, aldehydes and quinones.

Dr Evans said: “Despite the known limitations of benchtop spectrometers, a very similar quality of NMR data could be obtained for these samples, enough to accurately estimate concentrations of different classes of carbonyl-containing species. Using benchtop spectrometers will make NMR analysis of pyrolysis oils much simpler, cheaper, and more accessible to a wider range of different users.”

Original publication

Other news from the department science

These products might interest you

ERASPEC

ERASPEC by eralytics

Spectral Fuel Analysis in Seconds with ERASPEC

Fast delivery of over 40 fuel parameters at the push of a button

Microspectrometer

Microspectrometer by Hamamatsu Photonics

Ultra-compact microspectrometer for versatile applications

Precise Raman, UV/VIS and NIR measurements in portable devices

microspectrometers
NANOPHOX CS

NANOPHOX CS by Sympatec

Particle size analysis in the nano range: Analyzing high concentrations with ease

Reliable results without time-consuming sample preparation

particle analyzers
SPECORD PLUS

SPECORD PLUS by Analytik Jena

SPECORD PLUS Series - Maximum precision in UV/Vis

The modern classic guarantees the highest quality

contrAA 800

contrAA 800 by Analytik Jena

contrAA 800 Series – Atomic Absorption. Redefined

The best of classical atomic absorption and ICP-OES spectrometry are combined in the contrAA 800

ICP-OES spectrometer
ZEEnit

ZEEnit by Analytik Jena

Zeeman Technology for Maximum Sensitivity – Matching any Analytical Problem

Transverse-heated graphite furnace for optimum atomization conditions and high sample throughput

AAS spectrometers
PlasmaQuant 9100

PlasmaQuant 9100 by Analytik Jena

PlasmaQuant 9100 Series of ICP-OES Instruments

Reveal the Details That Matter

ICP-OES spectrometer
INVENIO

INVENIO by Bruker

FT-IR spectrometer of the future: INVENIO

Freely upgradeable and configurable FT-IR spectrometer

FTIR spectrometers
ALPHA II

ALPHA II by Bruker

Chemical analysis made easy: compact FT-IR system

Increase the efficiency of your routine analyses with user-friendly technology

FTIR spectrometers
Agera

Agera by HunterLab Europe

Measure color and gloss level simultaneously - in seconds

Easy-to-use colorimeter: standard-compliant, robust and precise

colorimeters
PlasmaQuant MS Elite

PlasmaQuant MS Elite by Analytik Jena

LC-ICP-MS Is the Key to the World of Elemental Species

Highest Sensitivity and Lowest Detection Limits with PlasmaQuant MS Series and PQ LC

novAA®  800

novAA® 800 by Analytik Jena

The Analyzer 4 You - novAA 800-Series

The reliable all-rounder, making routine analysis efficient and cost-effective

2060 Raman Analyzer

2060 Raman Analyzer by Metrohm

Self-calibrating inline Raman spectrometer

Analyze solids, liquids and gases - for reproducible, accurate results in the process

LUMiFlector

LUMiFlector by LUM

Inline & Atline MRS Spectrometer for Determination of Product Properties within a Few Seconds

It determines fat, protein and dry matter content in milk and dairy products

spectrometers
S2 PICOFOX

S2 PICOFOX by Bruker

Fast and precise trace element analysis on the move

TXRF technology for minimal samples and maximum efficiency

total reflection x-ray fluorescence spectrometers
S4 T-STAR

S4 T-STAR by Bruker

TXRF spectrometer: Sub-ppb detection limits & 24/7 analytics

Minimal operating costs because no gases, media or lab equipment are required

total reflection x-ray fluorescence spectrometers
Micro-Z ULS

Micro-Z ULS by Rigaku

Accurately measure sulphur content in fuels: WDXRF analyser

Reliable routine analyses with 0.3 ppm detection limit and compact design

WDXRF spectrometers
ZSX Primus IV/IVi

ZSX Primus IV/IVi by Rigaku

High-precision WDXRF analysis for industrial applications

Maximum sensitivity and throughput for light elements and complex samples

NEX CG II

NEX CG II by Applied Rigaku Technologies

Elemental analysis at ppb level for exact results

X-ray fluorescence spectrometers
Quantaurus-QY

Quantaurus-QY by Hamamatsu Photonics

High-speed UV/NIR photoluminescence spectrometer

Precise quantum yield measurements in milliseconds without reference standards

fluorescence spectrometers
Loading...

More news from our other portals

All FT-IR spectrometer manufacturers at a glance

See the theme worlds for related content

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures
View topic world
Topic World Spectroscopy

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures