Electric vehicle batteries could get big boost with new polymer coating

Scientists enhance lithium-ion battery performance at the atomic level

10-Mar-2023 - USA

Scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a conductive polymer coating – called HOS-PFM – that could enable longer lasting, more powerful lithium-ion batteries for electric vehicles. 

Gao Liu/Berkeley Lab

Berkeley Lab researchers demonstrated that the HOS-PFM coating significantly prevents aluminum-based electrodes from degrading during battery cycling while delivering high battery capacity over 300 cycles. From left: Scanning electron microscope images of aluminum on a copper bilayer device before battery cycling (Figure A) and after (Figure B). Figure C shows a copper tri-layer device with HOS-PFM coating after battery cycling.

Computer generated picture

Gao Liu/Berkeley Lab
Computer generated picture

“The advance opens up a new approach to developing EV batteries that are more affordable and easy to manufacture,“ said Gao Liu, a senior scientist in Berkeley Lab’sEnergy Technologies Area.

The HOS-PFM coating conducts both electrons and ions at the same time. This ensures battery stability and high charge/discharge rates while enhancing battery life. The coating also shows promise as a battery adhesive that could extend the lifetime of a lithium-ion battery from an average of 10 years to about 15 years, Liu added.

To demonstrate HOS-PFM’s superior conductive and adhesive properties, Liu and his team coated aluminum and silicon electrodes with HOS-PFM, and tested their performance in a lithium-ion battery setup. 

Silicon and aluminum are promising electrode materials for lithium-ion batteries because of their potentially high energy storage capacity and lightweight profiles. But these cheap and abundant materials quickly wear down after multiple charge/discharge cycles.

During experiments at the Advanced Light Source and the Molecular Foundry, the researchers demonstrated that the HOS-PFM coating significantly prevents silicon- and aluminum-based electrodes from degrading during battery cycling while delivering high battery capacity over 300 cycles, a performance rate that’s on par with today’s state-of-the-art electrodes. 

The results are impressive, Liu said, because silicon-based lithium-ion cells typically last for a limited number of charge/discharge cycles and calendar life. The researchers recently described these findings in the journal Nature Energy.

The HOS-PFM coating could allow the use of electrodes containing as much as 80% silicon. Such high silicon content could increase the energy density of lithium-ion batteries by at least 30%, Liu said. And because silicon is cheaper than graphite, the standard material for electrodes today, cheaper batteries could significantly increase the availability of entry-level electric vehicles, he added. 

The team next plans to work with companies to scale up HOS-PFM for mass manufacturing.

Original publication

Other news from the department science

More news from our other portals

All FT-IR spectrometer manufacturers at a glance

See the theme worlds for related content

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

25+ products
150+ companies
30+ whitepaper
20+ brochures
View topic world
Topic World Battery Technology

Topic World Battery Technology

The topic world Battery Technology combines relevant knowledge in a unique way. Here you will find everything about suppliers and their products, webinars, white papers, catalogs and brochures.

25+ products
150+ companies
30+ whitepaper
20+ brochures