Symbiotic CO₂ Sequestration
Bioengineered microbial community working together to store carbon
Computer-generated image
© Wiley-VCH
Various bacterial strains are used in biotechnology to produce specific chemicals. For example, some genetically modified strains produce lactic acid, which in turn is used to produce the biodegradable plastic, polylactic acid (PLA). Other strains are used to enrich precursors for biofuels or pharmaceuticals. However, because the bacteria require energy and nutrients, bacterial production of chemicals is often inefficient.
In contrast, phototrophic organisms naturally produce sugar from carbon dioxide, water, and sunlight. In a symbiotic community, therefore, chemical-producing bacteria could theoretically use this sugar as food, thus making them a potential carbon sink and simultaneously producing useful chemicals. However, many photoautotrophic organisms produce sucrose as their stored sugar, the exact sugar which bioengineered bacteria struggle to consume and utilize.
With this in mind, the research group of Jun Ni at Shanghai Jiao Tong University in Shanghai (China) carried out a systematic search for candidate bacterial strains that could be bioengineered but which could also grow naturally on sucrose. They found what they were looking for in a marine bacterium known as Vibrio natriegens: “Luckily, V. natriegens naturally harbors the complete sucrose transport and metabolism pathway,” reveal the authors. In addition, V. natriegens can be genetically manipulated and tolerates salt stress. This is important because salt stimulates photosynthetic cyanobacteria to produce sucrose, thereby creating mutually reinforcing processes.
The research team then used this knowledge to produce an integrated modular system for CO2 sequestration from V. natriegens and the known cyanobacterium Synechococcus elongatus. They improved sugar production in the cyanobacteria using genetic engineering, as well as adding genes to V. natriegens, which increased sugar uptake and conversion into chemicals. In an unexpectedly efficient process, the team observed that the cyanobacteria may package up the nutrients in vesicles which were then excreted. The marine bacteria were then readily able to ingest these vesicles.
The team produced four variants of V. natriegens in order to produce either lactic acid, butanediol for biofuel synthesis, or coumarin and melanin as precursors for chemicals and pharmaceuticals. The bacteria, in symbiosis with the cyanobacteria, produced the chemicals with a negative carbon balance. “This system could absorb more than 20 tons of carbon dioxide per ton of product,” the team report. The authors consider their results to be proof that symbiotic microbial communities can be used as effective carbon sinks.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.