Researchers propose new coupling strategy for organic wastewater treatment
DICP
CWPO technology is a kind of advanced oxidation process for advanced treatment of organic wastewater using hydroxyl radical (·OH), which is generated from hydrogen peroxide oxidation catalyzed by Fe2+. Nevertheless, low utilization efficiency of H2O2 and difficulty in iron ions cycling lead to high cost and indirect energy consumption, which limits its further large-scale application.
In the proposed Photo-CWPO strategy, efficient circulating of Fe3+/Fe2+ ions was achieved through Fe3+ ions reduction by photogenerated electrons, and meanwhile, photogenerated holes were used to degrade organic pollutants.
The researchers used decahedron BiVO4 photocatalyst to realize efficient circulating of Fe3+/Fe2+ ions with selectivity of ~100%, owing to the unique spatial photogenerated charge separation between different facets of the BiVO4 crystal, which inhibited the formation of iron sludge in the traditional CWPO process.
H2O2 species could be generated via a two-hole-involved oxidation process of H2O on {110} facets of decahedron BiVO4 crystals during the Fe3+ reduction process on the {010} facets, which could replenish the H2O2 consumption and fully utilize both photogenerated electrons and holes for degradation of pollutions. This strategy achieved a much higher total organic carbon removal rate in the coupling system than CWPO process.
"The Photo-CWPO strategy could be applied to mineralize various organic pollutants and showed great universality and stability," said Prof. SUN.
"We have applied this strategy for the treatment of wastewater from coal chemical industry, methanol to olefin industry and unsymmetrical dimethylhydrazine industry, all of which showed good treatment efficiency," said Prof. WEI.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.