Organic thin-film sensors for light-source analysis and anti-counterfeiting applications
As integrated components, the thin-film sensors could eliminate the need for external spectrometers in the future
Anton Kirch
Spectroscopy comprises a group of experimental methods that decompose radiation according to a specific property, e.g. wavelength or mass. It is considered one of the most important analytical methods in research and industry. Spectrometers can determine colors (wavelengths) of light sources and are used as sensors in various applications, such as medicine, engineering, food industry and many more. Commercially available instruments are usually relatively large and very expensive. They are mostly based on the principle of the prism or grating: light is refracted and the wavelength is assigned according to the angle of refraction.
At the Institute for Applied Physics (IAP) and the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) of the TU Dresden, such sensor components based on organic semiconductors have been researched for years. With the spin-offs Senorics and PRUUVE, two technologies have already been developed towards market maturity. Now, researchers at the IAP and IAPP, in cooperation with the Institute of Physical Chemistry, have developed a thin-film sensor that describes a completely new way of identifying the wavelength of light and, due to its small size and cost, has clear advantages over commercially available spectrometers.
The principle of operation of the novel sensors is as follows: Light of unknown wavelength excites luminescent materials in a hair-thin film. The film consists of a mixture of long-glowing (phosphorescent) and short-glowing (fluorescent) entities, which absorb the light under investigation in different ways. The intensity of the afterglow, can be used to infer the wavelength of the unknown input light.
"We exploit the fundamental physics of excited states in luminescent materials," explains Anton Kirch, doctoral student at the IAP. "Light of different wavelengths excites in such a system, when properly composed, certain proportions of long-lived triplet and short-lived singlet spin states. And we reverse that dependence. By identifying the spin fractions using a photodetector, we can identify light wavelengths."
"The great strength of our research alliance here in Dresden is our partners," says Prof. Sebastian Reineke, who coordinated the project. "Together with the groups of Prof. Alexander Eychmüller from Physical Chemistry and Karl Leo, professor of Optoelectronics, we can carry out all the fabrication and analysis steps ourselves, starting with material synthesis and film processing and ending with the fabrication of the organic detector."
Dr. Johannes Benduhn is group leader for Organic Sensors and Solar Cells at the IAP: "I was honestly very impressed that a simple photoactive film combined with a photodetector can form such a high-resolution device." Using this strategy, the scientists have achieved sub-nanometer spectral resolution and have successfully tracked minor wavelength changes of light sources. In addition to characterizing light sources, the novel sensors can also be used in counterfeit protection: "The small and inexpensive sensors could be used, for example, to quickly and reliably check banknotes or documents for certain security features and thus determine their authenticity, without any need for expensive laboratory technology," explains Anton Kirch.
Original publication
Other news from the department science
These products might interest you
SprayMaster inspex by LaVision
Quality Control for Your Spraying Process Through Digital Spray and Particle Analysis
Reliable, Automated, Digital - The Geometry Measurement of Your Spraying Process in Real Time
VEGAPULS | VEGABAR | VEGASWING by VEGA Grieshaber
Cyber-safe level measurement - here's how it works
Find out more about the unique sensor for liquid and solid media
FireSting-PRO by PyroScience
New fiber optic measuring device: Precise measurements even in the smallest volumes
Measure pH, oxygen and temperature even under sterile conditions
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.
Most read news
More news from our other portals
See the theme worlds for related content
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic World Spectroscopy
Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!
Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.
Topic world Sensor technology
Sensor technology has revolutionized the chemical industry by providing accurate, timely and reliable data across a wide range of processes. From monitoring critical parameters in production lines to early detection of potential malfunctions or hazards, sensors are the silent sentinels that ensure quality, efficiency and safety.