Chiral sources for metamaterial interface waveguides
A broadband near-field chiral source in the microwave band enables comparison of different edge states to advance applications in integrated photonics and wireless devices
Zhixia Xu.
To get there, we must better understand the characteristics and possible applications of different edge modes. As reported in Advanced Photonics, researchers from Southeast University, Dalian Maritime University, and University of California at San Diego collaborated to visualize various unidirectional edge waves in microwave metamaterial interface waveguides, based on localized sources carrying spin angular momentum and orbital angular momentum.
In their work, they present a local light-beam source, composed of an electric probe array. Their design includes a broadband feeding network to ensure the performance of the angular momentum of the light beams. For their systematic experiments, they established a near-field scanning platform to measure the unidirectional transmission directly. Based on their observations of three edge states—spoof surface plasmon polaritons, line waves, and valley topological insulators—they assess the advantages and disadvantages of each.
Overall, this research advances the field of chiral photonics science and promotes applications of chiral-sorting technology, particularly for microwave metadevices. According to corresponding author Tie Jun Cui of the State Key Laboratory of Millimeter Waves at Southeast University in Nanjing, “Developing the freedom of microwave angular momentum in the waveguides is meaningful to increase the channel capacity and to design robust and flexible devices. Based on various metamaterial interface waveguides, novel metadevices such as filters, splitters, antennas, and multiplexers can be widely utilized in radar and communication systems.”
Most read news
Organizations
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.