Scientists unravel mysterious mechanism behind “whisker crystal” growth
Whisker-thin nanofilaments trail bubbles to grow
Tokyo Metropolitan University
Nanowires are ultra-thin filaments of crystalline material promising exciting new applications in electronics, catalysis, and energy generation. They may also grow spontaneously where they are not desired, bridging insulating barriers and shorting electronic circuits. Getting a handle on how they grow is an important technological problem, but the exact mechanism remains unknown.
A team consisting of Professor Rei Kurita, Assistant Professor Marie Tani and Takumi Yashima from Tokyo Metropolitan University have been looking at crystal growth in o-terphenyl and salol, both typical organic compounds that exhibit “whisker crystals”, the rapid growth of thin filaments from fronts of crystalline material when cooled. On close inspection, they discovered that each filament featured a tiny bubble at its tip. They succeeded in showing that this bubble wasn’t just an impurity or just mixed in air, but a tiny capsule of gas of the same organic compound. Instead of molecules in the liquid simply depositing onto a growing front like in normal crystal growth, it was transferring to the gas inside the bubble before being attached to the tip of the filament, a wildly different picture from the standard picture of freezing in liquids. This led to unprecedentedly fast growth which could also be reproduced inside thin glass capillaries for a more controlled growth of nanowires.
Addressing the bubble formation itself, the team found that the large density difference between crystal and liquid in these compounds had a role to play. Repeating the experiments in other liquids which didn’t have such a big difference, they found no whisker growth. They reasoned that the crystalline front was prone to be home to large density inhomogeneities, ultimately leading to cavitation, the spontaneous formation of bubbles of gas which go on to give birth to whiskers.
Having discovered what caused filament growth, the team set about getting some control over the phenomenon by suppressing bubble formation. They added a small amount of impurity into the material to suppress cavitation. Sure enough, as bubbles disappeared, so did the whiskers, allowing for the slower but whisker-free growth of large chunks of uniform crystalline material.
With unprecedented tunability and an understanding of the physics behind the process, the team’s work promises new approaches to grow nanofilaments for technological applications, and different strategies to safeguard electronics and batteries from potentially dangerous shorts triggered by whisker crystals.
Original publication
Other news from the department science
Get the chemical industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.