Biofuel chemistry more complex than petroleum, say Sandia and Lawrence Livermore researchers

18-May-2010 - USA

Understanding the key elements of biofuel combustion is an important step toward insightful selection of next-generation alternative fuels.

And that's exactly what researchers at Sandia and Lawrence Livermore national laboratories are doing.

The journal Angewandte Chemie devotes its May 10 cover to a paper co-authored by Sandia's Nils Hansen and Lawrence Livermore's Charles Westbrook, which examines the essential elements of biofuel combustion.

The paper, "Biofuel combustion chemistry: from ethanol to biodiesel," examines the combustion chemistry of compounds that constitute typical biofuels, including alcohols, ethers and esters.

Biofuels, such as ethanol, biobutanol and biodiesel, are of increasing interest as alternatives to petroleum-based transportation fuels. According to Hansen and Westbrook, however, little research has been done on the vastly diverse and complex chemical reaction networks of biofuel combustion.

In general, the term biofuel is associated with only a few select chemical compounds, especially ethanol (used exclusively as a gasoline replacement in spark-ignition engines) and very large methyl esters in biodiesel (used as a diesel fuel replacement in diesel engines). The biofuels are oxygenated fuels, which distinguishes them from hydrocarbons in conventional petroleum-based fuels.

While much discussion surrounding biofuels has emphasized the process to make these alternative fuels and fuel additives, Hansen and Westbrook are the first to examine the characteristic aspects of the chemical pathways in the combustion of potential biofuels.

In collaboration with an international research team representing Germany, China and the U.S., Westbrook, Hansen and former Sandia post-doctoral student Tina Kasper used a combination of laser spectroscopy, mass spectrometry and flame chemistry modeling to explore the decomposition and oxidation mechanisms of certain biofuels and the formation of harmful or toxic emissions. Hansen's experiments were conducted in part at the Chemical Dynamics Beamline of the Advanced Light Source at the Lawrence Berkeley National Laboratory.

To understand the associated combustion reactions and to identify recurring reaction patterns, Hansen and Westbrook agreed, it is important to study prototypical variants of potential biofuels.

Other news from the department science

These products might interest you

Gilson MyPIPETMAN Select and MyPIPETMAN Enterprise Pipettes

Gilson MyPIPETMAN Select and MyPIPETMAN Enterprise Pipettes by Gilson

Grab the Gilson pipettes with your name and favorite colors!

Customise Your Pipettes to Fit Your Research

pipettes
Systec H-Series

Systec H-Series by Systec

Safe, reproducible and validatable sterilization of liquids, solids and waste

Autoclaves with 65-1580 liters usable space, flexibly expandable for various applications

laboratory autoclaves
Whatman™ folded filter papers

Whatman™ folded filter papers by Cytiva

Whatman folded filter papers

Convenient folded formats speed up your sample preparation

filter papers
Loading...

More news from our other portals

Is artificial intelligence revolutionising chemistry?

See the theme worlds for related content

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures
View topic world
Topic World Spectroscopy

Topic World Spectroscopy

Investigation with spectroscopy gives us unique insights into the composition and structure of materials. From UV-Vis spectroscopy to infrared and Raman spectroscopy to fluorescence and atomic absorption spectroscopy, spectroscopy offers us a wide range of analytical techniques to precisely characterize substances. Immerse yourself in the fascinating world of spectroscopy!

70+ products
40+ whitepaper
60+ brochures

Topic World Mass Spectrometry

Mass spectrometry enables us to detect and identify molecules and reveal their structure. Whether in chemistry, biochemistry or forensics - mass spectrometry opens up unexpected insights into the composition of our world. Immerse yourself in the fascinating world of mass spectrometry!

35+ products
5+ whitepaper
30+ brochures
View topic world
Topic World Mass Spectrometry

Topic World Mass Spectrometry

Mass spectrometry enables us to detect and identify molecules and reveal their structure. Whether in chemistry, biochemistry or forensics - mass spectrometry opens up unexpected insights into the composition of our world. Immerse yourself in the fascinating world of mass spectrometry!

35+ products
5+ whitepaper
30+ brochures