New insights into crystallisation processes
Alexander Van Driessche
Crystals are commonly regarded as the epitome of perfect order - a notion that has even led to them being attributed magical powers. Their orderly structure suggests that their growth also occurs in a very regular and orderly manner. In recent years, however, studies have challenged this "classical" view, and it is now considered likely that the growth of some crystalline materials can also occur in other ways.
To shed light on this question, a team of BAM researchers intensively analysed anhydrite crystals from Mexico and their growth history. They used crystals from the famous Naica mine in northern Mexico for their investigations. Natural caverns of the ore mine contain crystals that have grown over many millennia and are therefore particularly informative for crystallographers.
In their investigations, the scientists took a closer look at defects in the crystal samples in the nanometre to millimetre range and mapped the internal structure of the mineral in detail. These analyses showed that misalignment at the nanoscale spreads over length scales, eventually leading to the formation of voids inside the crystal that can even measure several tens of microns or more. They also found that these misalignment defects come from a so-called "seed of imperfection", leading to a macroscopic single crystal whose fragments do not fit together inside - even if the mineral appears perfect on the outside. The team thus came to the insight that misalignments on the nanoscale are amplified a million-fold during the growth process.
This new insight adds decisively to the concept of non-classical nucleation and crystalline growth processes. It is of great relevance for the development and production of new and improved materials.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.