"Chainmail catalysis" improves efficiency of CO oxidation at room temperature
Nature Communications
Recently, a research group led by Prof. DENG Dehui from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) designed a chainmail catalysis of graphene-isolated Pt from CoNi nanoparticles (Pt|CoNi) for CO oxidation at room temperature.
CoNi alloy was protected by ultrathin graphene shell from oxidation and therefore modulated the electronic property of Pt-graphene interface via electron penetration effect. It achieved near 100% CO conversion at room temperature, while there were limited conversions over Pt/C and Pt/CoNiOx catalysts.
By experiments and theoretical calculations, the researchers indicated that CO could saturate Pt sites, but O2 could adsorb at the Pt-graphene interface without competing with CO, which facilitated the O2 activation and the subsequent surface reaction.
"The graphene-isolated system in this work is distinct from the classical metal-metal oxide interface for catalysis, and it provides a new thought for the design of heterogeneous catalysts," said Prof. DENG.
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.