Advance in water purification
Using radicalized NOX derivatives supported on metal oxides
Korea Institute of Science and Technology (KIST)
The Korea Institute of Science and Technology (KIST) has announced that a KIST research group with principal investigators of Dr. Jongsik Kim and Dr. Heon Phil Ha has collaborated with a research team led by Prof. Keunhong Jeong in the the Korea Military Academy (KMA) to graft NO3- species on a metal oxide via chemical fusion between NOX and O2 under a low thermal energy (≤ 150 °C). The resulting supported NO3- species can then be radicalized to generate NO3• analogues that serve as degraders of refractory organic substances present in a wastewater.
Aqueous recalcitrant compounds including phenolics and bisphenol A are typically eliminated from water matrices via sedimentation with the use of coagulants or via degradation into H2O and COY (Y=1 or 2) with the injection of OH shuttles such as H2O2, O3, etc. However, these methods require additional stages to recover coagulants or suffer from short lifespans and/or chemical instabilities innate to •OH, H2O2, and O3, thus severely limiting the sustainability of H2O purification processes currently being commercialized.
As a substitute of •OH, NO3• can be particularly appealing due to its longer lifetime and/or greater oxidizing potential in comparison with •OH, •OOH, or O2•-, thereby being predicted to enhance the efficiency in degrading aqueous pollutants over the other radicals stated above. Nevertheless, NO3• production is not trivial and has a bunch of constraints such as the need of highly energized electrons in the presence of a radioactive element or highly acidic environments.
Dr. Kim and co-workers make it viable under a wastewater including H2O2 and NO3--functionalized manganese oxide that surface manganese species (Mn2+/Mn3+) initially activate H2O2 for the formation of •OH, whereas •OH subsequently activates NO3- functionality for its transition into NO3• (denoted as •OH → NO3•), all of which are evidenced by density functional calculation (DFT) techniques alongside with a bunch of control experiments.
The resulting NO3• species were demonstrated to escalate degradation efficiency of textile wastewater by five- or seven-fold compared to those provided by conventional radicals (•OH/•OOH/O2•-). Of significance, the catalyst (NO3--functionalized manganese oxide) discovered herein is ~30 % cheaper than a traditional commercial catalyst (iron salt) and is mass-producible. Of additional significance, the catalyst is reusable ten times or more. This is in contrast to a traditional catalyst that only guarantees one-time utilization in decomposing aqueous pollutants via homogeneous H2O2 scission (•OH generation).
Dr. Kim remarks that “The •OH → NO3• technology has been patented and sold to a domestic company (SAMSUNG BLUETECH). Given a plenty of merits imparted by the catalyst modified with NO3- functionalities, we basically expect to install the catalyst in a wastewater treatment unit so soon.”
Original publication
Other news from the department science
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.