Upgrade to Advanced Photon Source announced by DOE: First phase of planning and development approved
“This is a major step in securing America’s scientific future by taking an already premier facility and preparing it to meet the next generation of scientific needs and discoveries,” said Argonne Director Eric Isaacs. The upgrade will be more cost-effective than building a new facility. It will make revolutionary improvements in performance needed to address the sustainable energy and health research needs of the future. The upgrade will also add new X-ray facilities, make existing X-ray facilities 10 to 100 times more powerful and almost double the number of experiments that can be carried out in a year. In addition, the upgrade is expected to create new high-tech jobs.
Researchers using the APS have been at the forefront of scientific discovery since its creation in the 1990s. At present, the APS serves the experimental needs of more than 3,500 researchers each year, more than any other scientific user facility in the Western Hemisphere. The Advanced Photon Source uses high-energy X-ray beams to peer deep into the atomic and molecular structures of materials and living organisms as small as a few nanometers. The APS has been providing the U.S. scientific community with the expertise and research tools that enable breakthroughs such as improved battery technologies, an unprecedented understanding of how engine fuel injectors function, treatment for the human immunodeficiency virus and other diseases, the creation of new nanomaterials, and advances in nanobiology, among other developments.
The Upgrade at a Glance
Accelerator-based X-ray source innovations: Record brightness for penetrating X-rays at 25 keV and above using long straight sections, higher beam current and pioneering superconducting undulators; transverse radio-frequency deflection cavities to generate unique high-repetition-rate, 1-picosecond-duration X-ray pulses.
Unique X-ray capabilities and new beamlines: Long imaging beamlines, nanometer focusing optics for penetrating X-rays, short-pulse X-rays, high magnetic fields, inelastic scattering, phase contrast and nanobeams in realistic environments. These capabilities will answer key scientific questions and will result in ultrahigh phase contrast of more than three orders of magnitude, ultrahigh energy resolution in the range of microvolts, better than a nanometer spatial resolution and time resolution to a picosecond.
Optimized and expanded capabilities: The APS drove developments that require new approaches today, but which could not be anticipated in the 1990s. Demand for increasing capability and scope requires a new access model that supports world-leading, one-of-a-kind instruments, a change from the collaborative-access-team model of twentieth-century light sources. All APS beamlines will be optimized in the upgrade with higher performance to match scientific demand, almost doubling experimental capacity. Normal operating hours will be sustained with relatively minor APS user disruption during the upgrade project.
Most read news
Other news from the department science
These products might interest you
Ionendetektoren für Massenspektroskopie by Hamamatsu Photonics
Innovative detector solutions for
mass spectrometry
Unique devices for the next generation of mass spectral analysis
Mikroskopie-Zubehör by AHF analysentechnik
Optimize your fluorescence microscopy with premium accessories
Discover next generation optical filters and LED light sources
Get the chemical industry in your inbox
From now on, don't miss a thing: Our newsletter for the chemical industry, analytics, lab technology and process engineering brings you up to date every Tuesday and Thursday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.